
The algxpar package
0.99.2a

Jander Moreira – moreira.jander@gmail.com

2025/07/31

Abstract

The algxpar package is an extension of the algorithmicx1/algpseudocode package
to handle multi-line text with proper indentation and provide a number of other
improvements.

Contents

1 Introduction 2

2 Package usage and options 4

3 Writting pseudocode 5
3.1 A preamble on comments . 5
3.2 A preamble on options . 7
3.3 Statements . 7
3.4 Flow Control Blocks . 7

3.4.1 The if block . 7
3.4.2 The switch block . 8
3.4.3 The for block . 10
3.4.4 The while block . 10
3.4.5 The repeat-until block . 11
3.4.6 The loop block . 11

3.5 Constants and Identifiers . 12
3.6 Assignments and I/O . 12
3.7 Procedures and Functions . 13
3.8 Comments . 14
3.9 Documentation . 16

4 Customization and Fine Tunning 17
4.1 Options . 18

4.1.1 Fonts, shapes and sizes . 21
4.1.2 Colors . 22
4.1.3 Paragraphs . 22

4.2 Languages and translations . 23
4.3 Other features . 26

5 “Forgotten” features 26

6 To do 26
1https://ctan.org/pkg/algorithmicx.

1

https://ctan.org/pkg/algorithmicx

7 Examples 27
7.1 LZW revisited . 27
7.2 LZW revisited again . 27

.

Change History

0.9 (2019-11-12)
Initial version.

0.91 (2020-08-01)
\Id has been recoded to work in both

text and math modes, preventing
hyphenation . 12

\Set can be used for assignments. 13

0.99 (2023-06-28)
The code was reviewd and almost en-

tirely rewritten.
The “look and feel” of the pseu-

docode can be set in the
\begin{algorithmic} 7

\Set is deprecated and will no longer be
supported . 13

\Setl has been removed from the pack-
age . 13

Added support to style the main com-
ponents of the pseudocode, such as
keywords, comments and text and
widths. 18

New mechanism to translation with
separate files for each language 23

Added support to style named constants
and function/procedures identifiers. . . . 26

Macros \TextString and
\VisibleSpace accidentally re-
moved. 26

0.99.1 (2024/05/05)
Added experimental support to show

vertical indentantion lines. 18
line style option added to style indent

lines. 19

0.99.2 (2024/10/23)
Part of the code was rewritten using

etoolbox.
Wrong spacing between parboxes were

fixed. 22

0.99.2a (2025/07/31)
Fixed length computation in non-

commented lines to consider the
token length.

\Id updated to natively handle the
underscore character without es-
caping. 12

1 Introduction

I teach algorithms and programming, and for writing my algorithms, I’ve adopted the
algorithmicx package (algpseudocode). It allows me to create pseudocode that’s both
clear and easy to read, requiring minimal effort to ensure it looks visually appealing.

Teaching algorithms involves a different approach to pseudocode compared to its
typical use in scientific papers, where solutions are often presented in a more formal,
concise manner. Students typically work with abstract algorithms before learning a
specific programming language, so the focus is more on the logic of the solution than on
the variables themselves. Additionally, teaching strategies that emphasize refinement
and iteration call for a less programmatic and more descriptive style of code. For in-
stance, instead of writing something like “s← s+ c,” we might say, “accumulate current
expenses in the total sum of costs,” as the latter provides a clearer explanation of the
logic without requiring students to understand the specifics of variable manipulation.

However, this more verbose approach often results in longer sentences that can span
multiple lines. Given that pseudocode places a premium on visual clarity—particularly
in control structures and indentation—it became necessary to create a package that
accommodates multi-line statements while maintaining readability.

The algorithmicx and algpseudocode packages do not natively support multi-line
statements. Therefore, this package extends several macros to manage multi-line code
properly, adding new commands and features to improve its functionality.

2

\begin{algorithmic}[1]
\Description LZW Compression using a table with all known sequences of

bytes.↪→

\Input A flow of bytes
\Output A flow of bits with the compressed representation of the input bytes
\Statex
\Statep{Initialize a table with all byte values}[each table position holds a

single byte]↪→

\Statep{Initialize \Id{sequence} with the first byte from the input stream}
\While{there are bytes in the input}[wait until all bytes have been

processed]↪→

\Statep{Retrieve a single byte from the input and store it in \Id{byte}}
\If{the concatenation of \Id{sequence} and \Id{byte} exists in the

table}↪→

\Statep{Set \Id{sequence} to $\Id{sequence} +
\Id{byte}$}[concatenate without generating any output]↪→

\Else
\Statep{Output the code for \Id{sequence}}[i.e., the binary

representation of its index in the table]↪→

\Statep{Add the concatenation of \Id{sequence} and \Id{byte} to the
table}[the table learns a new, longer sequence]↪→

\Statep{Set \Id{sequence} to \Id{byte}}[begin a new sequence with
the remaining byte]↪→

\EndIf
\EndWhile
\Statep{Output the code for \Id{sequence}}[the remaining bit sequence]

\end{algorithmic}

Description: LZW Compression using a table with all known sequences of bytes.
Input: A flow of bytes
Output: A flow of bits with the compressed representation of the input bytes

1: Initialize a table with all byte values ▷ each table position holds a single byte
2: Initialize sequence with the first byte from the input stream
3: while there are bytes in the input do ▷ wait until all bytes have been processed
4: Retrieve a single byte from the input and store it in byte
5: if the concatenation of sequence and byte exists in the table then
6: Set sequence to sequence + byte ▷ concatenate without generating any output
7: else
8: Output the code for sequence ▷ i.e., the binary representation of its index in the

table
9: Add the concatenation of sequence and byte to

the table
▷ the table learns a new, longer

sequence
10: Set sequence to byte ▷ begin a new sequence with the remaining byte
11: end if
12: end while
13: Output the code for sequence ▷ the remaining bit sequence

3

2 Package usage and options

This package depends on the following packages:

algorithmicx (https://ctan.org/pkg/algorithmicx)
algpseudocode (https://ctan.org/pkg/algorithmicx)
amssymb (https://ctan.org/pkg/amsfonts)
etoolbox (https://ctan.org/pkg/etoolbox)
pgfmath (https://ctan.org/pkg/pgf)
pgfopts (https://ctan.org/pkg/pgf)
ragged2e (https://ctan.org/pkg/ragged2e)
varwidth (https://www.ctan.org/pkg/varwidth)
xcolor (https://www.ctan.org/pkg/xcolor)

To use the package, simply request its use in the preamble of the document.

\usepackage[⟨package options list⟩]{algxpar}

Currently, the list of package options includes the following.

⟨language name⟩

Algorithm keywords are typically created in English by default, with the En-
glish keyword set always being loaded. When available, one can use keyword
sets in other languages by specifying the desired language.
Currently supported languages:

• english (default language, always loaded)
• brazilian Brazilian Portuguese

% Loads Brazilian keyword set and sets it as default
\usepackage[brazilian]{algxpar}

language = ⟨language name⟩

This option selects the keyword set corresponding to ⟨language name⟩ as the
document’s default. It is available as a general option (see language).
This option is useful when other languages are loaded.

% Loads Brazilian keyword set but keeps English as default
\usepackage[brazilian, language = english]{algxpar}

noend = true | false Default: true; initially: true

The noend option suppresses the line marking the end of a block, while pre-
serving the indentation.
See more information in end and noend options.

% Suppresses all end-lines that close a block
\usepackage[noend]{algxpar}

4

https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/amsfonts
https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/ragged2e
https://www.ctan.org/pkg/varwidth
https://www.ctan.org/pkg/xcolor

3 Writting pseudocode

Algorithms, following the structure of the algorithmicx package, are written within the
algorithmic environment. The option to use a number to determine line numbering is
preserved from the original version.

An algorithm consists of instructions, control structures like conditionals and loops,
as well as documentation and comments.

\begin{algorithmic}
\Description Calculation of the factorial of a natural number
\Input $n \in \mathbb{N}$
\Output $n!$
\Statex
\Statep{\Read n}
\Statep{$\Id{factorial} \gets 1$}[$0! = 1! = 1$]
\For{$k \gets 2$ \To n}[from 2 up]

\Statep{$\Id{factorial} \gets \Id{factorial} \times k$}[$(k-1)! \times
k$]↪→

\EndFor
\Statep{\Write \Id{factorial}}

\end{algorithmic}

Description: Calculation of the factorial of a natural number
Input: n ∈ N
Output: n!

read n
factorial ← 1 ▷ 0! = 1! = 1
for k ← 2 to n do ▷ from 2 up

factorial ← factorial × k ▷ (k − 1)!× k
end for
write factorial

3.1 A preamble on comments

This is Euclid’s algorithm as shown in the algorithmicx package documentation2.

\begin{algorithmic}[1]
\Procedure{Euclid}{a,b}

\Comment{The g.c.d. of a and b}
\State $r\gets a\bmod b$
\While{$r\not=0$}

\Comment{We have the answer if r is 0}
\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile
\State \textbf{return} b\Comment{The gcd is b}

\EndProcedure
\end{algorithmic}

1: procedure Euclid(a, b) ▷ The g.c.d. of a and b
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while

2A label has been suppressed here.

5

8: return b ▷ The gcd is b
9: end procedure

Comments are added in loco with the \Comment macro, which makes them appear
along the right margin. The algxpar package embeded comments as part of the com-
mands themselves in order to add multi-line support.

Until algxpar v0.95, they could be added as an optional parameter before the text,
in the style of most LATEX macros.

\begin{algorithmic}[1]
\Procedure[The g.c.d. of a and b]{Euclid}{a,b} % <-- Comment

\State $r\gets a\bmod b$
\While[We have the answer if r is 0]{$r\not=0$} % <-- Comment

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile
\Statep[The gcd is b]{\Keyword{return} b} % <-- Comment

\EndProcedure
\end{algorithmic}

1: procedure Euclid(a, b) ▷ The g.c.d. of a and b
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while
8: return b ▷ The gcd is b
9: end procedure

Using the comment before the text always bothered me somewhat, as it seemed
more natural to put it after. hus, as of v0.99, the comment can be placed after the
text (as the second parameter of the macro), certainly making writing algorithms more
user-friendly. To maintain backward compatibility, the use of comments before text is
still supported, although it is discouraged.

n addition to this change, the use of comments in the new format has been extended
to most pseudocode macros, such as \EndWhile for example.

\begin{algorithmic}[1]
\Procedure{Euclid}{a,b}[The g.c.d. of a and b] % <-- Comment

\State $r\gets a\bmod b$
\While{$r\not=0$}[We have the answer if r is 0] % <-- Comment

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile[end of the loop] % <-- Comment
\Statep{\Keyword{return} b}[The gcd is b] % <-- Comment

\EndProcedure
\end{algorithmic}

1: procedure Euclid(a, b) ▷ The g.c.d. of a and b
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while ▷ end of the loop

6

8: return b ▷ The gcd is b
9: end procedure

Using \Comment still produces the expected result, although it may break automatic
tracking of longer lines.

Throughout this documentation, former style comments are denoted as ⟨comment*⟩,
while the new format uses ⟨comment⟩.

See more about comments in section 3.8.

3.2 A preamble on options

As of version 0.99, a list of options can be added to each command, changing some
algorithm presentation settings. These settings are optional and must be entered using
angle brackets at the end of the command.

\begin{algorithmic}
<keyword font = \scshape\bfseries, comment width = nice>
\If{$a > b$}[check conditions]

\While{$a > 0$}
<keyword color = blue!70>
\Statep{\Call{Process}{a}}[process current data]

\EndWhile
\EndIf

\end{algorithmic}

if a > b then ▷ check conditions
while a > 0 do

Process(a) ▷ process current data
end while

end if

There is a lot of additional information about options and how they can be used.
See discussion and full list in section 4.

3.3 Statements

The macros \State and \Statex defined in algorithmicx can still be used for single
statements and have the same general behaviour.

For automatic handling of comments and multi-line text, the \Statep macro is
available, which should be used instead of \State.

\Statep[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

The \Statep macro corresponds to an statement that can extrapolate a single
line. The continuation of each line is indented from the baseline and this
indentation is based on the value indicated in the statement indent option.
Any ⟨options⟩ specified apply only to this macro.

3.4 Flow Control Blocks

Flow control is essentially based on conditionals and loop.

3.4.1 The if block

This block is the standard if block.

7

\begin{algorithmic}
\State \Read v
\If{$v < 0$}[is it negative?]

\Statep{$v \gets -v$}[make it positive]
\EndIf

\end{algorithmic}

read v
if v < 0 then ▷ is it negative?

v ← −v ▷ make it positive
end if

\If[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

\If shows ⟨text⟩ (the condition) and must be closed with an \EndIf, creating
a block of nested commands.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndIf[⟨comment⟩]<⟨options⟩>

\EndIf closes its respective \If.
Any ⟨options⟩ specified apply only to this macro.

\Else[⟨comment⟩]<⟨options⟩>

This macro defines the else part of the \If statement.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\Elsif[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

\ElsIf defines the \If chaining. The argument ⟨text⟩ is the new condition.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

3.4.2 The switch block

\begin{algorithmic}
\Statep{Get \Id{Optiondef}}
\Switch{\Id{Optiondef}}
\Case{1}[inserts new record]
\Statep{\Call{Insert}{\Id{record}}}
\EndCase
\Case{2}[deletes a record]
\Statep{\Call{Delete}{\Id{key}}}
\EndCase
\Otherwise
\Statep{Print ``invalid option''}
\EndOtherwise
\EndSwitch

\end{algorithmic}

8

Get Optiondef
switch Optiondef

case 1 do ▷ inserts new record
Insert(record)

end case
case 2 do ▷ deletes a record

Delete(key)
end case
otherwise

Print “invalid option”
end otherwise

end switch

\Switch[⟨comment*⟩]{⟨expression⟩}[⟨comment⟩]<⟨options⟩>

The \Switch is closed by a matching \EndSwitch.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndSwitch[⟨comment⟩]<⟨options⟩>

This macro closes a \Switch block.
Any ⟨options⟩ specified apply only to this macro.

\Case[⟨comment*⟩]{⟨constant-list⟩}[⟨comment⟩]<⟨options⟩>

When the result of the switch expression matches one of the constants in
⟨constants-list⟩, then the case is executed. Usually the ⟨constant-list⟩ is a single
constant, a comma-separated list of constants or some kind of range specifica-
tion.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndCase[⟨comment⟩]<⟨options⟩>

This macro closes a corresponding \Case statement.
Any ⟨options⟩ specified apply only to this macro.

\Otherwise[⟨comment⟩]<⟨options⟩>

A switch structure can optionally use an otherwise clause, which is executed
when no previous cases had a hit.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndOtherwise[⟨comment⟩]<⟨options⟩>

This macro closes a corresponding \Otherwise statement.
Any ⟨options⟩ specified apply only to this macro.

9

3.4.3 The for block

The for loop uses \For and is also flavored with two variants: for each (\ForEach)
and for all (\ForAll).

\begin{algorithmic}
\For{$i \gets 0$ \To n}

\Statep{Do something with i}
\EndFor
\ForAll{$\Id{item} \in C$}

\Statep{Do something with \Id{item}}
\EndFor
\ForEach{\Id{item} in queue Q}

\Statep{Do something with \Id{item}}
\EndFor

\end{algorithmic}

for i← 0 to n do
Do something with i

end for
for all item ∈ C do

Do something with item
end for
for each item in queue Q do

Do something with item
end for

\For[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

The ⟨text⟩ is used to establish the loop scope.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndFor[⟨comment⟩]<⟨Optiondef ⟩>

This macro closes a corresponding \For, \ForEach or \ForAll.
Any ⟨options⟩ specified apply only to this macro.

\ForEach[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

Same as \For.

\ForAll[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

Same as \For.

3.4.4 The while block

\While is the loop with testing condition at the top.

\begin{algorithmic}
\While{$n > 0$}

\Statep{Do something}
\Statep{$n \gets n - 1$}

\EndWhile
\end{algorithmic}

10

while n > 0 do
Do something
n← n− 1

end while

\While[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

In ⟨text⟩ is the boolean expression that, when False, will end the loop.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndWhile[⟨comment⟩]<⟨options⟩>

This macro closes a matching \While block.
Any ⟨options⟩ specified apply only to this macro.

3.4.5 The repeat-until block

The loop with testing condition at the bottom is the \Repeat/\Until block.

\begin{algorithmic}
\Repeat

\Statep{Do something}
\Statep{$n \gets n - 1$}

\Until{$n \leq 0$}
\end{algorithmic}

repeat
Do something
n← n− 1

until n ≤ 0

\Repeat[⟨comment⟩]<⟨options⟩>

This macro starts the repeat loop, which is closed with \Until.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\Until[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

In ⟨text⟩ is the boolean expression that, when \True, will end the loop.
Any ⟨options⟩ specified apply only to this macro.

3.4.6 The loop block

A generic loop is build with \Loop.

\begin{algorithmic}
\Loop

\Statep{Do something}
\Statep{$n \gets n + 1$}
\If{n is multiple of 5}

\Statep{\Continue}[restarts loop]

11

\EndIf
\Statep{Do something else}
\If{$n \leq 0$}

\Statep{\Break}[ends loop]
\EndIf
\Statep{Keep working}

\EndLoop
\end{algorithmic}

loop
Do something
n← n+ 1
if n is multiple of 5 then

continue ▷ restarts loop
end if
Do something else
if n ≤ 0 then

break ▷ ends loop
end if
Keep working

end loop

\Loop[⟨comment⟩]<⟨options⟩>

The generic loop starts with \Loop and ends with \EndLoop. Usually the
infinite loop is interrupted by and internal \Break or restarted with \Continue.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndLoop[⟨comment⟩]<⟨options⟩>

\EndLoop closes a matching \Loop block.
Any ⟨options⟩ specified apply only to this macro.

3.5 Constants and Identifiers

A few macros for well known constants were defined: \True (True), \False (False),
and \Nil (Nil).

The macro \Id was created to handle “program-like” named identifiers, such as sum,
word_counter and so on.

\Id{⟨identifier⟩}
Updated in 0.99.2a Identifiers are emphasised: \Id{my_value} is my_value. Its designed to work

in both text and math modes: \Id{offer}_k is offerk.

3.6 Assignments and I/O

To support teaching-like, basic pseudocode writing, the macros \Read and \Write are
provided.

\begin{algorithmic}
\Statep{\Read v_1, v_2}
\Statep{$\Id{mean} \gets \dfrac{v_1 + v_2}{2}$}[calculate]
\Statep{\Write \Id{mean}}

12

\end{algorithmic}

read v1, v2

mean ← v1 + v2
2

▷ calculate

write mean

The \Set macro, although obsolete, can be used for assignments.

\Set{⟨lvalue⟩}{⟨expression⟩}
Deprecated in 0.99 This macro expands to \Id{#1} \gets #2.

It will no longer be supported but will be retained as-is for backward compat-
ibility. Since proper handling of text and math modes is needed and its usage
offers no clear benefit, there is no justification to keep it.

\Setl:
Removed in 0.99 The macro \Setl has been removed.

3.7 Procedures and Functions

Modularization uses \Procedure or \Function.

\begin{algorithmic}
\Procedure{SaveNode}{\Id{node}}[saves a B+-tree node to

disk]↪→

\If{\Id{node}.\Id{is_modified}}
\If{$\Id{node}.\Id{address} = -1$}

\Statep{Set file writting position after file's last
byte}[creates a new node on disk]↪→

\Else
\Statep{Set file writting position to

\Id{node}.\Id{address}}[updates the node]↪→

\EndIf
\Statep{Write \Id{node} to disk}
\Statep{$\Id{node}.\Id{is_modified} \gets \False$}

\EndIf
\EndProcedure

\end{algorithmic}

procedure SaveNode(node) ▷ saves a B+-tree node to disk
if node.is_modified then

if node.address = −1 then
Set file writting position after file’s last byte ▷ creates a new node on disk

else
Set file writting position to node.address ▷ updates the node

end if
Write node to disk
node.is_modified ← False

end if
end procedure

\begin{algorithmic}
\Function{Factorial}{n}[$n \geq 0$]

\If{$n \in \{0, 1\}$}
\Statep{\Return 1}[base case]

\Else
\Statep{\Return $n \times \Call{Factorial}{n-1}$}[recursive case]

\EndIf
\EndFunction

13

\end{algorithmic}

function Factorial(n) ▷ n ≥ 0
if n ∈ {0, 1} then

return 1 ▷ base case
else

return n× Factorial(n− 1) ▷ recursive case
end if

end function

\Procedure{⟨name⟩}{⟨argument list⟩}[⟨comment⟩]<⟨options⟩>

This macro creates a procedure block that must be ended with
\EndProcedure.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndProcedure[⟨comment⟩]<⟨optons⟩>

This macro closes the \Procedure block.
Any ⟨options⟩ specified apply only to this macro.

\Function{⟨name⟩}{⟨argument list⟩}[⟨comment⟩]<⟨options⟩>

This macro creates a function block that must be ended with \EndFunction.
A \Return is defined.
Any ⟨options⟩ specified in this macro will impact this command and all items
within the inner block, propagating up to and including the closing macro.

\EndFunction[⟨comment⟩]<⟨optons⟩>

This macro closes the \Function block.
Any ⟨options⟩ specified apply only to this macro.

For calling a procedure or function, \Call should be used.

\Call{⟨name⟩}{⟨arguments⟩}<⟨options⟩>

\Call is used to state a function or procedure call. The module’s ⟨name⟩ and
⟨arguments⟩ are mandatory.
Any ⟨options⟩ specified apply only to this macro.

3.8 Comments

The \Comment macro, as defined by the algorithmicx package, retains its original behavior
and has been redefined to support styling options.

\Comment{⟨text⟩}<⟨options⟩>

The updated \Comment can be used with \State, \Statex, and \Statep. When
used with \Statep, it should be enclosed within the text braces, though multi-
line statements may function differently than expected.
Any ⟨options⟩ specified apply only to this macro.

14

\begin{minipage}{7.5cm}
\begin{algorithmic}

<comment color = blue>% for viewing purposes only
\State Assign the value zero to the variable x\Comment{first

assignment}↪→

\Statep{Assign the value zero to the variable x\Comment{first
assignment}}↪→

\Statep{Assign the value zero to the variable x}[first assignment]%
best choice↪→

\end{algorithmic}
\end{minipage}

Assign the value zero to the variable x ▷ first
assignment
Assign the value zero to the variable x ▷ first

assignment
Assign the value zero to the vari-

able x
▷ first as-

signment

\Commentl{⟨text⟩}<⟨options⟩>

While \Comment pushes text to the end of the line, the \Commentl macro is
“local” – it simply places a comment without altering the line structure.
Local comments follows regular text and no line changes are checked.
Any ⟨options⟩ specified apply only to this macro.

\begin{algorithmic}
\If{$a > 0$~~\Commentl{special case}\\
or\\

$a < b$~~\Commentl{general case}\\}
\Statep{Process data~~\Commentl{may take a while}}

\EndIf
\end{algorithmic}

if a > 0 ▷ special case
or
a < b ▷ general case
then
Process data ▷ may take a while

end if

\CommentIn{⟨text⟩}<⟨options⟩>

\CommentIn is an alternative to line comments, which typically extend to the
end of the line. This macro defines a comment with both a beginning and an
end. A comment starts with ▷ and ends with ◁.
Any ⟨options⟩ specified apply only to this macro.

\begin{algorithmic}
\If{$a > 0$ \CommentIn{special case} or $a < b$ \CommentIn{general case}}

\Statep{Process data~~\Commentl{may take a while}}
\EndIf

\end{algorithmic}

15

if a > 0 ▷ special case ◁ or a < b ▷ general case ◁ then
Process data ▷ may take a while

end if

3.9 Documentation

A series of macros are defined to provide the header documentation for a pseudocode.

\begin{algorithmic}
\Description Calculation of the factorial of a natural number through

successive multiplications↪→

\Require $n \in \mathbb{N}$
\Ensure $f = n!$

\end{algorithmic}

Description: Calculation of the factorial of a natural number through successive multiplica-
tions

Require: n ∈ N
Ensure: f = n!

\Description ⟨description text⟩

The \Description is intended to hold the general description of the pseu-
docode.

\Require ⟨pre-conditions⟩

The required initial state that the code relies on. These are pre-conditions.

\Ensure ⟨post-conditions⟩

The final state produced by the code. These are post-conditions.

\begin{algorithmic}
\Description Calculation of the factorial of a natural number through

successive multiplications↪→

\Input n (integer)
\Output $n!$ (integer)

\end{algorithmic}

Description: Calculation of the factorial of a natural number through successive multiplica-
tions

Input: n (integer)
Output: n! (integer)

\Input ⟨inputs⟩

This works as an alternative to \Require, presenting Input.

\Output ⟨outputs⟩

This works as an alternative to \Ensure, presenting Output.

16

4 Customization and Fine Tunning

Starting from version 0.99 of algxpar, a set of options has been introduced to customize
the presentation of algorithms. For instance, colors and fonts specific to keywords can
now be specified, offering a more convenient way to tailor each algorithm.

The \AlgSet macro fulfills this purpose.

\AlgSet{⟨options list⟩}

This macro sets algorithmic settings as specified in the ⟨options list⟩, which is
key/value comma-separated list.
All settings will be applied to the entire document from the point where the
macro is called. To limit the scope of a definition made with \AlgSet to a
specific part of the document, simply enclose it in a TEX group.

\AlgSet{algorithmic indent = 1.5cm}
\begin{algorithmic}

\Statep{\Read k}
\If{$k < 0$}

\Statep{$k \gets -k$}
\EndIf
\Statep{\Write k}

\end{algorithmic}

read k
if k < 0 then

k ← −k
end if
write k

If the settings are only applied to a single algorithm and not a group of algorithms
in a text section, the easiest way is to include the options in the algorithmicx envi-
ronment.

\begin{algorithmic}
<keyword font = \sffamily\bfseries\itshape>
\Statep{\Read k}
\If{$k < 0$}

\Statep{$k \gets -k$}
\EndIf
\Statep{\Write k}

\end{algorithmic}

read k
if k < 0 then

k ← −k
end if
write k

Named styles can also be defined using the pgfkeys syntax.

\AlgSet{
fancy/.style = {

text color = green!40!black,
keyword color = blue!75!black,
comment color = brown!80!black,
comment symbol = \texttt{//},

17

}
}
\begin{algorithmic}

<fancy>
\Statep{\Commentl{Process k}}
\Statep{\Read k}
\If{$k < 0$}

\Statep{$k \gets -k$}[back to positive]
\EndIf
\Statep{\Write k}

\end{algorithmic}

// Process k
read k
if k < 0 then

k ← −k // back to positive
end if
write k

Sometimes some settings need to be applied exclusively to one command, for example
to highlight a segment of the algorithm.

\AlgSet{
highlight/.style = {

text color = red!60!black,
keyword color = red!60!black,

}
}
\begin{algorithmic}

\Statep{\Commentl{Process k}}
\Statep{\Read k}
\If{$k < 0$}

<highlight>
\Statep{$k \gets -k$}[back to positive]

\EndIf
\Statep{\Write k}

\end{algorithmic}

▷ Process k
read k
if k < 0 then

k ← −k ▷ back to positive
end if
write k

4.1 Options

This section presents the options that can be specified for the algorithms, either using
\AlgSet or the ⟨options⟩ parameter of the various macros.

indent lines = true | false Default: true; initially: false
New in 0.99.1 The indent lines option displays vertical indentation lines in the pseudocode.

This feature works properly only if the start and end of the block are on the
same page. Additionally, at least two compilation steps are needed for the lines
to be correctly positioned.
To change the style for the lines, use line style
This feature is still experimental and incomplete.

18

\begin{algorithmic}
<indent lines>
\For{$i \gets 0$ \To $N - 1$}

\For{$j \gets$ \To $N - 1$}
\If{$m_{ij} < 0$}

\Statep{$m_{ij} \gets 0$}
\EndIf

\EndFor
\EndFor

\end{algorithmic}

\begin{algorithmic}
<indent lines, noend>
\For{$i \gets 0$ \To $N - 1$}

\For{$j \gets$ \To $N - 1$}
\If{$m_{ij} < 0$}

\Statep{$m_{ij} \gets 0$}
\EndIf

\EndFor
\EndFor

\end{algorithmic}

for i← 0 to N − 1 do
for j ← to N − 1 do

if mij < 0 then
mij ← 0

end if
end for

end for
for i← 0 to N − 1 do

for j ← to N − 1 do
if mij < 0 then

mij ← 0

line style = ⟨style⟩
New in 0.99.1 Almost anything TikZ can apply to a line can be used to set the indentation

lines.
To show indentation lines in algorithms, indent lines must be set to true.

\begin{algorithmic}
<indent lines, line style = {orange, dotted, -latex, ultra thick}>
\For{$i \gets 0$ \To $N - 1$}

\For{$j \gets$ \To $N - 1$}
\If{$m_{ij} < 0$}

\Statep{$m_{ij} \gets 0$}
\EndIf

\EndFor
\EndFor

\end{algorithmic}

for i← 0 to N − 1 do
for j ← to N − 1 do

if mij < 0 then
mij ← 0

end if
end for

end for

19

language = ⟨language⟩

This key is used to select the keyword language set for the current scope. The
language keyword set should have already been loaded via the package options
(see section 2).

noend S
tructured algorithms use blocks to define their structures, marking both the
beginning and the end. In pseudocode, it is common to use a line to indicate
the end of a block. The end option suppresses this line.
The result resembles a program written in Python.

end T
his option reverses the behaviour of noend, and the closing line of a block
presented.

\begin{algorithmic}
<noend>
\For{$i \gets 0$ \To $N - 1$}

\For{$j \gets$ \To $N - 1$}
\If{$m_{ij} < 0$}

<end>
\Statep{$m_{ij} \gets 0$}

\EndIf
\EndFor

\EndFor
\end{algorithmic}

for i← 0 to N − 1 do
for j ← to N − 1 do

if mij < 0 then
mij ← 0

end if

keywords = ⟨list of keywords assignments⟩

This option allows you to modify an existing keyword or define a new one. For
more information on keywords and translations, see section 4.2.

\begin{algorithmic}
<
keywords = {

terminate = Terminate, % new keyword
then = \{, % redefined
endif = \}, % redefined
while = whilst, % redefined

}
>
\While{\True}

\If{$t < 0$}
\Statep{Run the \Keyword{terminate} module}

\EndIf
\EndWhile

\end{algorithmic}

20

whilst True do
if t < 0 {

Run the Terminate module
}

end whilst

algorithmic indent = ⟨width⟩ Initially: 1.5em

The algorithmic indent is the amount of horizontal space used for indentation
inner commands.
This option actually sets the algorithmicx’s \algorithmicindent.

comment symbol = ⟨symbol⟩ Initially: \triangleright

The default symbol that preceeds the text in comments is ▷, as used by
algorithmicx, and can be changed with this key.
The current comment symbol is available with \CommentSymbol. Do not change
this symbol by redefining \CommentSymbol, as font, shape and color settings
will no longer be respected. Always use comment symbol.

comment symbol right = ⟨symbol⟩ Initially: \triangleleft

This symbol closes a \CommentIn. It is set to ◁ and can be accessed using
the \CommentSymbolRight macro. Avoid changing the symbol by redefining
\CommentSymbolRight, as this would cause font, shape, and color settings to
be ignored. Always use the comment symbol right option.

4.1.1 Fonts, shapes and sizes

The options ins this section allows setting font family, shape, weight and size for several
parts of an algorithm.

Notice that color are handled separately (see section 4.1.2) and using \color with
font options will tend to break the document.

text font = ⟨font, shape and size⟩ Initially: empty

This setting corresponds to the font family, its shape and size and applies to
the ⟨text⟩ field in each of the commands.

comment font = ⟨font, shape and size⟩ Initially: \slshape

This setting corresponds to the font family, its shape and size and applies to
all comments.

keyword font = ⟨font, shape and size⟩ Initially: \bfseries

This setting sets the font family, shape, and size, and applies to all keywords,
such as function or end.

21

constant font = ⟨font, shape and size⟩ Initially: \scshape

This setting sets the font family, shape, and size, and applies to all constants,
such as Nil, True and False.
This setting also applies when \Constant is used.

module font = ⟨font, shape and size⟩ Initially: \scshape

This setting sets the font family, shape, and size, and applies to both procedure
and function identifiers, as well as their callings with \Call.

4.1.2 Colors

Colors are defined using the xcolors package.

text color = ⟨color⟩ Initially: .

This setting corresponds to the color that applies to the ⟨text⟩ field in each of
the commands.

comment color = ⟨color⟩ Initially: .!70

This setting corresponds to the color that applies to all comments.

keyword color = ⟨color⟩ Initially: .

This key is used to set the color for all keywords.

constant color = ⟨color⟩ Initially: .

This setting corresponds to the color that applies to the defined constant (see
section 3.5) and also when macro \Constant is used.

module color = ⟨color⟩ Initially: .

This color is applied to the identifier used in both \Procedure and \Function
definitions, as well as module calls with \Call. Notice that the arguments use
text color.

4.1.3 Paragraphs

Multi-line support are internally handled by \parboxes.

procedure Euclid(a, b) ▷ The g.c.d. of a and b
r ← a mod b

while r ̸= 0 do ▷ We have the answer if r is 0
a← b

b← r

r ← a mod b

end while
return b ▷ The g.c.d. is b

end procedure

22

The options in this section should be used to set how these paragraphs will be
presented.

text style = ⟨style⟩ Initially: \RaggedRight

This ⟨style⟩ is applied to the paragraph box that holds the ⟨text⟩ field in all
commands.

comment style = ⟨style⟩ Initially: \RaggedRight

This ⟨style⟩ is applied to the paragraph box that holds the ⟨comment⟩ field
in all algorithmic commands. This setting will not be used with \Comment,
\Commentl or \CommentIn.

comment separator width = ⟨width⟩ Initially: 1em

The minimum space between the text box and the \CommentSymbol. This
affects the available space in a line for keywords, text and comment.

statement indent = ⟨width⟩ Initially: 1em

This is the \hangindent set inside \Statep statements.

comment width = auto|nice|⟨width⟩ Initially: auto

There are two ways to balance the lengths of ⟨text⟩ and ⟨comments⟩ on a line,
each providing different visual experiences.
In automatic mode (auto), the balance is chosen considering the widths that
the actual text and comment have, trying to reduce the total number of lines,
given there is not enough space in a single line for the keywords, text , comment
and comment symbol. The consequence is that each line with a comment will
have its own balance.
The second mode, nice, sets a fixed width for the entire algorithm, maintaining
consistency across all comments. In that case, longer comments will tend to
span a larger number of lines. The “nice value” is hardcoded and sets the
comment width to 0.4\linewidth.
Also, a fixed comment ⟨width⟩ can be specified.

4.2 Languages and translations

A simple mechanism is employed to allow keywords to be translated into other lan-
guages.

\begin{algorithmic}
<language = brazilian>
\Procedure{Euclid}{a,b}

\State $r\gets a\bmod b$
\While{$r\not=0$}

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile
\Statep{\Keyword{return} b}

\EndProcedure

23

\end{algorithmic}

procedimento Euclid(a, b)
r ← a mod b
enquanto r ̸= 0 faça

a← b
b← r
r ← a mod b

fim enquanto
retorne b

fim procedimento

Creating a new keyword set uses the \AlgLanguageSet macro.

\AlgLanguageSet{⟨language name⟩}{⟨keyword assignments⟩}

This macro assigns new values to existing keywords as well as creates new ones.
Once defined, keywords cannot be removed.
If a default keyword is not redefined, the English version will be used.
To create a new set, copy the file algxpar-english.kw.tex and modify it as needed.
Note that there is a set of keywords for the lines that close each block. These
keys are included to offer more flexibility in customizing how these lines are
displayed. It is strongly recommended to use the Keyword macro for references
to other keywords, so that font, color, and language changes can be made
without issues.
In translations, these compound keywords are not necessarily required (see the
file brazilian.kw.tex, which follows the settings in algxpar-english.kw.tex). How-
ever, if they are defined, there will be different versions for each language.

% English keywords
% Moreira, J. (moreira.jander@gmail.com)
\AlgLanguageSet{english}{%

description = Description,
input = Input,
output = Output,
require = Require,
ensure = Ensure,
end = end,
if = if,
then = then,
else = else,
switch = switch,
of = of,
case = case,
otherwise = otherwise,
do = do,
while = while,
repeat = repeat,
until = until,
loop = loop,
foreach = {for~each},
forall = {for~all},
for = for,
to = to,
downto = {down~to},
step = step,
continue = continue,
break = break,

24

function = function,
procedure = procedure,
return = return,
byref = byref,
byvalue = byvalue,
true = True,
false = False,
nil = Nil,
read = read,
write = write,
set = set,

}

% Compound keywords
\AlgLanguageSet{english}{

endwhile = \Keyword{end}~\Keyword{while},
endfor = \Keyword{end}~\Keyword{for},
endloop = \Keyword{end}~\Keyword{loop},
endif = \Keyword{end}~\Keyword{if},
endswitch = \Keyword{end}~\Keyword{switch},
endcase = \Keyword{end}~\Keyword{case},
endotherwise = \Keyword{end}~\Keyword{otherwise},
endprocedure = \Keyword{end}~\Keyword{procedure},
endfunction = \Keyword{end}~\Keyword{function},

}

The mechanism behind \AlgLanguageSet utilizes the \SetKeyword macro, which
is called to modify the value of a single keyword3. To retrieve the value of a specific
keyword, the \Keyword macro should be used. It produces the formatted value based
on the options currently applied to keywords.

\SetKeyword[⟨language⟩]{⟨keyword⟩}{⟨value⟩}

The macro \SetKeyword changes a given ⟨keyword⟩ to ⟨value⟩ if it exists; oth-
erwise a new keyword is created.
If ⟨language⟩ is omitted, the language currently in use is changed.
See also the keywords option.

\Keyword[⟨language⟩]{⟨keyword⟩}

This macro expands to the value of a keyword in a ⟨language⟩ using the font,
shape, size, and color determined for the keyword set.
If ⟨language⟩ is not specified, the current language is used. ⟨keyword⟩ is any
keyword defined for a language, including custom ones.

\SetKeyword[german]{if}{wenn} % new
Depending on the language, a keyword can take different forms: \Keyword{if}

(English), \Keyword[german]{if} (German) or \Keyword[brazilian]{if}
(Brazilian Portuguese).

↪→

↪→

Depending on the language, a keyword can take different forms: if (English), wenn (German)
or se (Brazilian Portuguese).

3Macros such as \algorithmicwhile from the algorithmicx package are no longer in use.

25

\AlgLanguageSet{spanish}{
while = mientras,
do = hacer,
endwhile = fin,
if = si,
then = entonces,
else = en otro caso,
endif = fin,

}
\begin{algorithmic}

<language = spanish, indent lines>
\If{$a > b$}[check conditions]

\While{$a > 0$}
\Statep{\Call{Process}{a}}[process current data]

\EndWhile
\Else

\Statep{\Call{Signal}{\Id{pid}}}
\EndIf

\end{algorithmic}

si a > b entonces ▷ check conditions
mientras a > 0 hacer

Process(a) ▷ process current data
fin

en otro caso
Signal(pid)

fin

4.3 Other features

These macros were added to support the styles defined for named constants and function
and procedure identifiers.

\Constant{⟨name⟩}

This macro presents ⟨name⟩ using font, shape, size and color defined for con-
stants.

\Module{⟨name⟩}

This macro presents ⟨name⟩ using font, shape, size and color defined for proce-
dures and functions.

5 “Forgotten” features

Some features were forgotten from v0.91 to v.99, although it was not intentional. The
macros \TextString and \VisibleSpace simply vanished into thin air.

6 To do

This is a todo list:
• Add font, shape, size and color settings to a whole algorithm;
• Add font, shape, size and color settings to line numbers;
• Add font, shape, size and color settings to identifiers.

26

7 Examples

7.1 LZW revisited

\AlgSet{
comment color = purple,
comment width = nice,
comment style = \raggedleft,

}

Description: LZW Compression using a table with all known sequences of bytes.
Input: A flow of bytes
Output: A flow of bits with the compressed representation of the input bytes

1: Initialize a table with all byte values ▷ each table position holds a single
byte

2: Initialize sequence with the first byte from the input stream
3: while there are bytes in the input do ▷ wait until all bytes have been

processed
4: Retrieve a single byte from the input and store it in byte
5: if the concatenation of sequence and byte exists in the table then
6: Set sequence to sequence + byte ▷ concatenate without generating

any output
7: else
8: Output the code for sequence ▷ i.e., the binary representation of

its index in the table
9: Add the concatenation of sequence

and byte to the table
▷ the table learns a new, longer

sequence
10: Set sequence to byte ▷ begin a new sequence with the

remaining byte
11: end if
12: end while
13: Output the code for sequence ▷ the remaining bit sequence

7.2 LZW revisited again

\AlgSet{
keyword font = \ttfamily,
keyword color = green!40!black,
text font = \itshape,
comment font = \footnotesize,
algorithmic indent = 1.5em,
indent lines,
noend,

}

27

Description: LZW Compression using a table with all known sequences of bytes.
Input: A flow of bytes
Output: A flow of bits with the compressed representation of the input bytes

1: Initialize a table with all byte values ▷ each table position holds a single byte
2: Initialize sequence with the first byte from the input stream
3: while there are bytes in the input do ▷ wait until all bytes have been processed
4: Retrieve a single byte from the input and store it in byte
5: if the concatenation of sequence and byte exists in the table then
6: Set sequence to sequence + byte ▷ concatenate without generating any output
7: else
8: Output the code for sequence ▷ i.e., the binary representation of its index in the

table
9: Add the concatenation of sequence and byte to the

table
▷ the table learns a new,

longer sequence

10: Set sequence to byte ▷ begin a new sequence with the remaining byte

11: Output the code for sequence ▷ the remaining bit sequence

28

Index
\AlgLanguageSet (macro), 24
algorithmic indent (option), 21
\AlgSet (macro), 17

brazilian (option), 4
\Break (macro), 12

\Call (macro), 14
\Case (macro), 9
\Comment (macro), 14
comment color (option), 22
comment font (option), 21
comment separator width (option), 23
comment style (option), 23
comment symbol (option), 21
comment symbol right (option), 21
comment width (option), 23
\CommentIn (macro), 15
\Commentl (macro), 15
\CommentSymbol (macro), 21
\CommentSymbolRight (macro), 21
\Constant (macro), 26
constant color (option), 22
constant font (option), 22
\Continue (macro), 12

\Description (macro), 16

\Else (macro), 8
\Elsif (macro), 8
end (option), 20
\EndCase (macro), 9
\EndFor (macro), 10
\EndFunction (macro), 14
\EndIf (macro), 8
\EndLoop (macro), 12
\EndOtherwise (macro), 9
\EndProcedure (macro), 14
\EndSwitch (macro), 9
\EndWhile (macro), 11
english (option), 4
\Ensure (macro), 16

\False (macro), 12
\For (macro), 10
\ForAll (macro), 10
\ForEach (macro), 10
\Function (macro), 14

\Id (macro), 12
\If (macro), 8
indent lines (option), 18

\Input (macro), 16

\Keyword (macro), 25
keyword color (option), 22
keyword font (option), 21
keywords (option), 20

language (option), 4, 20
line style (option), 19
\Loop (macro), 12

Macros
\AlgLanguageSet, 24
\AlgSet, 17
\Break, 12
\Call, 14
\Case, 9
\Comment, 14
\CommentIn, 15
\Commentl, 15
\CommentSymbol, 21
\CommentSymbolRight, 21
\Constant, 26
\Continue, 12
\Description, 16
\Else, 8
\Elsif, 8
\EndCase, 9
\EndFor, 10
\EndFunction, 14
\EndIf, 8
\EndLoop, 12
\EndOtherwise, 9
\EndProcedure, 14
\EndSwitch, 9
\EndWhile, 11
\Ensure, 16
\False, 12
\For, 10
\ForAll, 10
\ForEach, 10
\Function, 14
\Id, 12
\If, 8
\Input, 16
\Keyword, 25
\Loop, 12
\Module, 26
\Nil, 12
\Otherwise, 9
\Output, 16

29

\Procedure, 14
\Read, 12
\Repeat, 11
\Require, 16
\Return, 14
\Set, 13
\SetKeyword, 25
\Setl, 13
\Statep, 7
\Switch, 9
\True, 12
\Until, 11
\While, 11
\Write, 12

\Module (macro), 26
module color (option), 22
module font (option), 22

\Nil (macro), 12
noend (option), 4, 20

Options
algorithmic indent, 21
brazilian, 4
comment color, 22
comment font, 21
comment separator width, 23
comment style, 23
comment symbol, 21
comment symbol right, 21
comment width, 23
constant color, 22
constant font, 22
end, 20
english, 4
indent lines, 18
keyword color, 22
keyword font, 21
keywords, 20
language, 4, 20
line style, 19
module color, 22
module font, 22
noend, 4, 20
statement indent, 23
text color, 22
text font, 21
text style, 23

\Otherwise (macro), 9
\Output (macro), 16

\Procedure (macro), 14

\Read (macro), 12

\Repeat (macro), 11
\Require (macro), 16
\Return (macro), 14

\Set (macro), 13
\SetKeyword (macro), 25
\Setl (macro), 13
statement indent (option), 23
\Statep (macro), 7
\Switch (macro), 9

text color (option), 22
text font (option), 21
text style (option), 23
\True (macro), 12

\Until (macro), 11

\While (macro), 11
\Write (macro), 12

30

	Introduction
	Package usage and options
	Writting pseudocode
	A preamble on comments
	A preamble on options
	Statements
	Flow Control Blocks
	The if block
	The switch block
	The for block
	The while block
	The repeat-until block
	The loop block

	Constants and Identifiers
	Assignments and I/O
	Procedures and Functions
	Comments
	Documentation

	Customization and Fine Tunning
	Options
	Fonts, shapes and sizes
	Colors
	Paragraphs

	Languages and translations
	Other features

	``Forgotten'' features
	To do
	Examples
	LZW revisited
	LZW revisited again

