
RFC 9457

Problem Details for HTTP APIs

Abstract

This document defines a "problem detail" to carry machine-readable details of errors in HTTP

response content to avoid the need to define new error response formats for HTTP APIs.

This document obsoletes RFC 7807.

Stream:

RFC:

Obsoletes:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9457

7807

Standards Track

July 2023

2070-1721

 M. Nottingham E. Wilde S. Dalal

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9457

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Nottingham, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9457
https://www.rfc-editor.org/rfc/rfc7807
https://www.rfc-editor.org/info/rfc9457
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Requirements Language

3. The Problem Details JSON Object

3.1. Members of a Problem Details Object

3.1.1. "type"

3.1.2. "status"

3.1.3. "title"

3.1.4. "detail"

3.1.5. "instance"

3.2. Extension Members

4. Defining New Problem Types

4.1. Example

4.2. Registered Problem Types

4.2.1. about:blank

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. JSON Schema for HTTP Problems

Appendix B. HTTP Problems and XML

Appendix C. Using Problem Details with Other Formats

Appendix D. Changes from RFC 7807

Acknowledgements

Authors' Addresses

3

4

4

5

6

6

7

7

7

8

8

9

9

10

10

11

11

11

12

12

13

15

15

16

16

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 2

1. Introduction

HTTP status codes () cannot always convey enough information about errors

to be helpful. While humans using web browsers can often understand an HTML

response content, non-human consumers of HTTP APIs have difficulty doing so.

To address that shortcoming, this specification defines simple JSON and XML

document formats to describe the specifics of a problem encountered -- "problem details".

For example, consider a response indicating that the client's account doesn't have enough credit.

The API's designer might decide to use the 403 Forbidden status code to inform generic HTTP

software (such as client libraries, caches, and proxies) of the response's general semantics. API-

specific problem details (such as why the server refused the request and the applicable account

balance) can be carried in the response content so that the client can act upon them

appropriately (for example, triggering a transfer of more credit into the account).

This specification identifies the specific "problem type" (e.g., "out of credit") with a URI .

HTTP APIs can use URIs under their control to identify problems specific to them or can reuse

existing ones to facilitate interoperability and leverage common semantics (see Section 4.2).

Problem details can contain other information, such as a URI identifying the problem's specific

occurrence (effectively giving an identifier to the concept "The time Joe didn't have enough credit

last Thursday"), which can be useful for support or forensic purposes.

The data model for problem details is a JSON object; when serialized as a JSON document,

it uses the "application/problem+json" media type. Appendix B defines an equivalent XML

format, which uses the "application/problem+xml" media type.

When they are conveyed in an HTTP response, the contents of problem details can be negotiated

using proactive negotiation; see . In particular, the language used for

human-readable strings (such as those in title and description) can be negotiated using the

Accept-Language request header field (), although that negotiation may

still result in a non-preferred, default representation being returned.

Problem details can be used with any HTTP status code, but they most naturally fit the semantics

of 4xx and 5xx responses. Note that problem details are (naturally) not the only way to convey

the details of a problem in HTTP. If the response is still a representation of a resource, for

example, it's often preferable to describe the relevant details in that application's format.

Likewise, defined HTTP status codes cover many situations with no need to convey extra detail.

This specification's aim is to define common error formats for applications that need one so that

they aren't required to define their own or, worse, tempted to redefine the semantics of existing

HTTP status codes. Even if an application chooses not to use it to convey errors, reviewing its

design can help guide the design decisions faced when conveying errors in an existing format.

See Appendix D for a list of changes from .

Section 15 of [HTTP]

[HTML5]

[JSON] [XML]

[URI]

[JSON]

Section 12.1 of [HTTP]

Section 12.5.4 of [HTTP]

[RFC7807]

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc9110#section-15
https://www.rfc-editor.org/rfc/rfc9110#section-12.1
https://www.rfc-editor.org/rfc/rfc9110#section-12.5.4

2. Requirements Language

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. The Problem Details JSON Object

The canonical model for problem details is a JSON object. When serialized in a JSON

document, that format is identified with the "application/problem+json" media type.

For example:

Here, the out-of-credit problem (identified by its type) indicates the reason for the 403 in "title",

identifies the specific problem occurrence with "instance", gives occurrence-specific details in

"detail", and adds two extensions: "balance" conveys the account's balance, and "accounts" lists

links where the account can be topped up.

When designed to accommodate it, problem-specific extensions can convey more than one

instance of the same problem type. For example:

[JSON]

POST /purchase HTTP/1.1

Host: store.example.com

Content-Type: application/json

Accept: application/json, application/problem+json

{

 "item": 123456,

 "quantity": 2

}

HTTP/1.1 403 Forbidden

Content-Type: application/problem+json

Content-Language: en

{

 "type": "https://example.com/probs/out-of-credit",

 "title": "You do not have enough credit.",

 "detail": "Your current balance is 30, but that costs 50.",

 "instance": "/account/12345/msgs/abc",

 "balance": 30,

 "accounts": ["/account/12345",

 "/account/67890"]

}

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 4

The fictional problem type here defines the "errors" extension, an array that describes the details

of each validation error. Each member is an object containing "detail" to describe the issue and

"pointer" to locate the problem within the request's content using a JSON Pointer

.

When an API encounters multiple problems that do not share the same type, it is

that the most relevant or urgent problem be represented in the response. While it is possible to

create generic "batch" problem types that convey multiple, disparate types, they do not map well

into HTTP semantics.

Note also that the API has responded with the "application/problem+json" type, even though the

client did not list it in Accept, as is allowed by HTTP (see).

POST /details HTTP/1.1

Host: account.example.com

Accept: application/json

{

 "age": 42.3,

 "profile": {

 "color": "yellow"

 }

}

HTTP/1.1 422 Unprocessable Content

Content-Type: application/problem+json

Content-Language: en

{

 "type": "https://example.net/validation-error",

 "title": "Your request is not valid.",

 "errors": [

 {

 "detail": "must be a positive integer",

 "pointer": "#/age"

 },

 {

 "detail": "must be 'green', 'red' or 'blue'",

 "pointer": "#/profile/color"

 }

]

}

[JSON-

POINTER]

RECOMMENDED

Section 12.5.1 of [HTTP]

3.1. Members of a Problem Details Object

Problem detail objects can have the following members. If a member's value type does not match

the specified type, the member be ignored -- i.e., processing will continue as if the member

had not been present.

MUST

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc9110#section-12.5.1

3.1.1. "type"

The "type" member is a JSON string containing a URI reference that identifies the problem

type. Consumers use the "type" URI (after resolution, if necessary) as the problem type's

primary identifier.

When this member is not present, its value is assumed to be "about:blank".

If the type URI is a locator (e.g., those with an "http" or "https" scheme), dereferencing it

provide human-readable documentation for the problem type (e.g., using HTML).

However, consumers automatically dereference the type URI, unless they do so

when providing information to developers (e.g., when a debugging tool is in use).

When "type" contains a relative URI, it is resolved relative to the document's base URI, as per

. However, using relative URIs can cause confusion, and they might not be

handled correctly by all implementations.

For example, if the two resources "https://api.example.org/foo/bar/123" and "https://

api.example.org/widget/456" both respond with a "type" equal to the relative URI reference

"example-problem", when resolved they will identify different resources ("https://

api.example.org/foo/bar/example-problem" and "https://api.example.org/widget/example-

problem", respectively). As a result, it is that absolute URIs be used in "type"

when possible and that when relative URIs are used, they include the full path (e.g., "/types/123").

The type URI is allowed to be a non-resolvable URI. For example, the tag URI scheme can be

used to uniquely identify problem types:

However, resolvable type URIs are encouraged by this specification because it might become

desirable to resolve the URI in the future. For example, if an API designer used the URI above and

later adopted a tool that resolves type URIs to discover information about the error, taking

advantage of that capability would require switching to a resolvable URI, creating a new identity

for the problem type and thus introducing a breaking change.

[URI]

MUST

SHOULD

[HTML5]

SHOULD NOT

[URI], Section 5

RECOMMENDED

[TAG]

tag:example@example.org,2021-09-17:OutOfLuck

3.1.2. "status"

The "status" member is a JSON number indicating the HTTP status code ()

generated by the origin server for this occurrence of the problem.

The "status" member, if present, is only advisory; it conveys the HTTP status code used for the

convenience of the consumer. Generators use the same status code in the actual HTTP

response, to assure that generic HTTP software that does not understand this format still behaves

correctly. See Section 5 for further caveats regarding its use.

[HTTP], Section 15

MUST

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc3986#section-5
https://www.rfc-editor.org/rfc/rfc9110#section-15

Consumers can use the status member to determine what the original status code used by the

generator was when it has been changed (e.g., by an intermediary or cache) and when a

message's content is persisted without HTTP information. Generic HTTP software will still use

the HTTP status code.

3.1.3. "title"

The "title" member is a JSON string containing a short, human-readable summary of the problem

type.

It change from occurrence to occurrence of the problem, except for localization

(e.g., using proactive content negotiation; see).

The "title" string is advisory and is included only for users who are unaware of and cannot

discover the semantics of the type URI (e.g., during offline log analysis).

SHOULD NOT

[HTTP], Section 12.1

3.1.4. "detail"

The "detail" member is a JSON string containing a human-readable explanation specific to this

occurrence of the problem.

The "detail" string, if present, ought to focus on helping the client correct the problem, rather

than giving debugging information.

Consumers parse the "detail" member for information; extensions are more

suitable and less error-prone ways to obtain such information.

SHOULD NOT

3.1.5. "instance"

The "instance" member is a JSON string containing a URI reference that identifies the specific

occurrence of the problem.

When the "instance" URI is dereferenceable, the problem details object can be fetched from it. It

might also return information about the problem occurrence in other formats through use of

proactive content negotiation (see).

When the "instance" URI is not dereferenceable, it serves as a unique identifier for the problem

occurrence that may be of significance to the server but is opaque to the client.

When "instance" contains a relative URI, it is resolved relative to the document's base URI, as per

. However, using relative URIs can cause confusion, and they might not be

handled correctly by all implementations.

For example, if the two resources "https://api.example.org/foo/bar/123" and "https://

api.example.org/widget/456" both respond with an "instance" equal to the relative URI reference

"example-instance", when resolved they will identify different resources ("https://

api.example.org/foo/bar/example-instance" and "https://api.example.org/widget/example-

instance", respectively). As a result, it is that absolute URIs be used in "instance"

when possible, and that when relative URIs are used, they include the full path (e.g., "/instances/

123").

[HTTP], Section 12.5.1

[URI], Section 5

RECOMMENDED

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9110#section-12.1
https://www.rfc-editor.org/rfc/rfc9110#section-12.5.1
https://www.rfc-editor.org/rfc/rfc3986#section-5

3.2. Extension Members

Problem type definitions extend the problem details object with additional members that

are specific to that problem type.

For example, our out-of-credit problem above defines two such extensions -- "balance" and

"accounts" to convey additional, problem-specific information.

Similarly, the "validation error" example defines an "errors" extension that contains a list of

individual error occurrences found, with details and a pointer to the location of each.

Clients consuming problem details ignore any such extensions that they don't recognize;

this allows problem types to evolve and include additional information in the future.

When creating extensions, problem type authors should choose their names carefully. To be used

in the XML format (see Appendix B), they will need to conform to the Name rule in

.

MAY

MUST

Section 2.3 of

[XML]

4. Defining New Problem Types

When an HTTP API needs to define a response that indicates an error condition, it might be

appropriate to do so by defining a new problem type.

Before doing so, it's important to understand what they are good for and what is better left to

other mechanisms.

Problem details are not a debugging tool for the underlying implementation; rather, they are a

way to expose greater detail about the HTTP interface itself. Designers of new problem types

need to carefully take into account the , in particular, the risk

of exposing attack vectors by exposing implementation internals through error messages.

Likewise, truly generic problems -- i.e., conditions that might apply to any resource on the Web --

are usually better expressed as plain status codes. For example, a "write access disallowed"

problem is probably unnecessary, since a 403 Forbidden status code in response to a PUT request

is self-explanatory.

Finally, an application might have a more appropriate way to carry an error in a format that it

already defines. Problem details are intended to avoid the necessity of establishing new "fault" or

"error" document formats, not to replace existing domain-specific formats.

That said, it is possible to add support for problem details to existing HTTP APIs using HTTP

content negotiation (e.g., using the Accept request header to indicate a preference for this format;

see).

New problem type definitions document:

a type URI (typically, with the "http" or "https" scheme)

Security Considerations (Section 5)

[HTTP], Section 12.5.1

MUST

1.

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 8

https://www.w3.org/TR/2008/REC-xml-20081126/#NT-Name
https://www.rfc-editor.org/rfc/rfc9110#section-12.5.1

a title that appropriately describes it (think short)

the HTTP status code for it to be used with

Problem type definitions specify the use of the Retry-After response header (

) in appropriate circumstances.

A problem type URI resolve to HTML documentation that explains how to

resolve the problem.

A problem type definition specify additional members on the problem details object. For

example, an extension might use typed links to another resource that machines

can use to resolve the problem.

If such additional members are defined, their names start with a letter (ALPHA, as per

) and comprise characters from ALPHA, DIGIT (

), and "_" (so that it can be serialized in formats other than JSON), and they be three

characters or longer.

2.

3.

MAY [HTTP], Section

10.2.3

SHOULD [HTML5]

MAY

[WEB-LINKING]

SHOULD

[ABNF], Appendix B.1 SHOULD [ABNF], Appendix

B.1 SHOULD

4.1. Example

For example, if you are publishing an HTTP API to your online shopping cart, you might need to

indicate that the user is out of credit (our example from above) and therefore cannot make the

purchase.

If you already have an application-specific format that can accommodate this information, it's

probably best to do that. However, if you don't, you might use one of the problem detail formats

-- JSON if your API is JSON-based or XML if it uses that format.

To do so, you might look in the registry (Section 4.2) for an already-defined type URI that suits

your purposes. If one is available, you can reuse that URI.

If one isn't available, you could mint and document a new type URI (which ought to be under

your control and stable over time), an appropriate title and the HTTP status code that it will be

used with, along with what it means and how it should be handled.

4.2. Registered Problem Types

This specification defines the "HTTP Problem Types" registry for common, widely used problem

type URIs, to promote reuse.

The policy for this registry is Specification Required, per .

When evaluating requests, the designated expert(s) should consider community feedback, how

well-defined the problem type is, and this specification's requirements. Vendor-specific,

application-specific, and deployment-specific values are unable to be registered. Specification

documents should be published in a stable, freely available manner (ideally located with a URL)

but need not be standards.

[RFC8126], Section 4.6

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9110#section-10.2.3
https://www.rfc-editor.org/rfc/rfc9110#section-10.2.3
https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1
https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1
https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1
https://www.rfc-editor.org/rfc/rfc8126#section-4.6

Type URI:

Title:

Recommended HTTP status code:

Reference:

Registrations use the prefix " " for the type

URI. Note that those URIs may not be able to be resolved.

The following template should be used for registration requests:

[a URI for the problem type]

[a short description of the problem type]

[what status code is most appropriate to use with the type]

[to a specification defining the type]

See the registry at for details on where to send

registration requests.

MAY https://iana.org/assignments/http-problem-types#

<https://iana.org/assignments/http-problem-types>

Type URI:

Title:

Recommended HTTP status code:

Reference:

4.2.1. about:blank

This specification registers one Problem Type, "about:blank", as follows.

about:blank

See HTTP Status Code

N/A

RFC 9457

The "about:blank" URI , when used as a problem type, indicates that the problem has no

additional semantics beyond that of the HTTP status code.

When "about:blank" is used, the title be the same as the recommended HTTP status

phrase for that code (e.g., "Not Found" for 404, and so on), although it be localized to suit

client preferences (expressed with the Accept-Language request header).

Please note that according to how the "type" member is defined (Section 3.1), the "about:blank"

URI is the default value for that member. Consequently, any problem details object not carrying

an explicit "type" member implicitly uses this URI.

[ABOUT]

SHOULD

MAY

5. Security Considerations

When defining a new problem type, the information included must be carefully vetted. Likewise,

when actually generating a problem -- however it is serialized -- the details given must also be

scrutinized.

Risks include leaking information that can be exploited to compromise the system, access to the

system, or the privacy of users of the system.

Generators providing links to occurrence information are encouraged to avoid making

implementation details such as a stack dump available through the HTTP interface, since this can

expose sensitive details of the server implementation, its data, and so on.

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 10

https://iana.org/assignments/http-problem-types#
https://iana.org/assignments/http-problem-types

[ABNF]

[HTTP]

[JSON]

[RFC2119]

[RFC8126]

[RFC8174]

[URI]

7. References

7.1. Normative References

 and ,

, , , , January 2008,

.

, , and , ,

, , , June 2022,

.

, ,

, , , December 2017,

.

, , ,

, , March 1997,

.

, , and ,

, , , , June

2017, .

, ,

, , , May 2017,

.

, , and ,

, , , , January 2005,

.

The "status" member duplicates the information available in the HTTP status code itself, bringing

the possibility of disagreement between the two. Their relative precedence is not clear, since a

disagreement might indicate that (for example) an intermediary has changed the HTTP status

code in transit (e.g., by a proxy or cache). Generic HTTP software (such as proxies, load

balancers, firewalls, and virus scanners) are unlikely to know of or respect the status code

conveyed in this member.

6. IANA Considerations

In the "application" registry under the "Media Types" registry, IANA has updated the "application/

problem+json" and "application/problem+xml" registrations to refer to this document.

IANA has created the "HTTP Problem Types" registry as specified in Section 4.2 and populated it

with "about:blank" as per Section 4.2.1.

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 11

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc3986

[XML]

[ABOUT]

[HTML5]

[ISO-19757-2]

[JSON-POINTER]

[JSON-SCHEMA]

[RDFA]

[RFC7807]

[TAG]

[WEB-LINKING]

[XSLT]

, , , , and ,

,

, November 2008,

.

7.2. Informative References

, , , ,

August 2012, .

, , .

,

, ,

December 2008, .

, , and ,

, , , April 2013,

.

, , , and ,

, ,

, 10 June 2022,

.

, , , and ,

, , March 2015,

.

 and , , ,

, March 2016, .

 and , , ,

, October 2005, .

, , , , October

2017, .

, , and ,

, , October 2010,

.

Bray, T. Paoli, J. Sperberg-McQueen, C. M. Maler, E. F. Yergeau "Extensible

Markup Language (XML) 1.0 (Fifth Edition)" W3C Recommendation REC-

xml-20081126 <https://www.w3.org/TR/2008/REC-

xml-20081126/>

Moonesamy, S., Ed. "The "about" URI Scheme" RFC 6694 DOI 10.17487/RFC6694

<https://www.rfc-editor.org/info/rfc6694>

WHATWG "HTML: Living Standard" <https://html.spec.whatwg.org>

ISO "Information technology -- Document Schema Definition Language (DSDL) --

Part 2: Regular-grammar-based validation -- RELAX NG" ISO/IEC 19757-2:2008

<https://www.iso.org/standard/52348.html>

Bryan, P., Ed. Zyp, K. M. Nottingham, Ed. "JavaScript Object Notation

(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-

editor.org/info/rfc6901>

Wright, A., Ed. Andrews, H., Ed. Hutton, B., Ed. G. Dennis "JSON Schema:

A Media Type for Describing JSON Documents" Work in Progress Internet-

Draft, draft-bhutton-json-schema-01 <https://datatracker.ietf.org/

doc/html/draft-bhutton-json-schema-01>

Adida, B. Birbeck, M. McCarron, S. I. Herman "RDFa Core 1.1 - Third

Edition" W3C Recommendation <https://www.w3.org/TR/2015/REC-

rdfa-core-20150317/>

Nottingham, M. E. Wilde "Problem Details for HTTP APIs" RFC 7807 DOI

10.17487/RFC7807 <https://www.rfc-editor.org/info/rfc7807>

Kindberg, T. S. Hawke "The 'tag' URI Scheme" RFC 4151 DOI 10.17487/

RFC4151 <https://www.rfc-editor.org/info/rfc4151>

Nottingham, M. "Web Linking" RFC 8288 DOI 10.17487/RFC8288

<https://www.rfc-editor.org/info/rfc8288>

Clark, J. Pieters, S. H. Thompson "Associating Style Sheets with XML

documents 1.0 (Second Edition)" W3C Recommendation <https://

www.w3.org/TR/2010/REC-xml-stylesheet-20101028/>

Appendix A. JSON Schema for HTTP Problems

This section presents a non-normative JSON Schema for HTTP problem details. If

there is any disagreement between it and the text of the specification, the latter prevails.

[JSON-SCHEMA]

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 12

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.rfc-editor.org/info/rfc6694
https://html.spec.whatwg.org
https://www.iso.org/standard/52348.html
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.rfc-editor.org/info/rfc7807
https://www.rfc-editor.org/info/rfc4151
https://www.rfc-editor.org/info/rfc8288
https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/
https://www.w3.org/TR/2010/REC-xml-stylesheet-20101028/

NOTE: '\' line wrapping per RFC 8792

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "title": "An RFC 7807 problem object",

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "format": "uri-reference",

 "description": "A URI reference that identifies the \

problem type."

 },

 "title": {

 "type": "string",

 "description": "A short, human-readable summary of the \

problem type."

 },

 "status": {

 "type": "integer",

 "description": "The HTTP status code \

generated by the origin server for this occurrence of the problem.",

 "minimum": 100,

 "maximum": 599

 },

 "detail": {

 "type": "string",

 "description": "A human-readable explanation specific to \

this occurrence of the problem."

 },

 "instance": {

 "type": "string",

 "format": "uri-reference",

 "description": "A URI reference that identifies the \

specific occurrence of the problem. It may or may not yield \

further information if dereferenced."

 }

 }

}

Appendix B. HTTP Problems and XML

HTTP-based APIs that use XML can express problem details using the format defined in

this appendix.

The RELAX NG schema for the XML format is:

[XML]

[ISO-19757-2]

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 13

Note that this schema is only intended as documentation and not as a normative schema that

captures all constraints of the XML format. It is possible to use other XML schema languages to

define a similar set of constraints (depending on the features of the chosen schema language).

The media type for this format is "application/problem+xml".

Extension arrays and objects are serialized into the XML format by considering an element

containing a child or children to represent an object, except for elements containing only one or

more child elements named "i", which are considered arrays. For example, the example above

appears in XML as follows:

This format uses an XML namespace, primarily to allow embedding it into other XML-based

formats; it does not imply that it can or should be extended with elements or attributes in other

namespaces. The RELAX NG schema explicitly only allows elements from the one namespace

used in the XML format. Any extension arrays and objects be serialized into XML markup

using only that namespace.

 default namespace ns = "urn:ietf:rfc:7807"

 start = problem

 problem =

 element problem {

 (element type { xsd:anyURI }?

 & element title { xsd:string }?

 & element detail { xsd:string }?

 & element status { xsd:positiveInteger }?

 & element instance { xsd:anyURI }?),

 anyNsElement

 }

 anyNsElement =

 (element ns:* { anyNsElement | text }

 | attribute * { text })*

HTTP/1.1 403 Forbidden

Content-Type: application/problem+xml

Content-Language: en

<?xml version="1.0" encoding="UTF-8"?>

<problem xmlns="urn:ietf:rfc:7807">

 <type>https://example.com/probs/out-of-credit</type>

 <title>You do not have enough credit.</title>

 <detail>Your current balance is 30, but that costs 50.</detail>

 <instance>https://example.net/account/12345/msgs/abc</instance>

 <balance>30</balance>

 <accounts>

 <i>https://example.net/account/12345</i>

 <i>https://example.net/account/67890</i>

 </accounts>

</problem>

MUST

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 14

When using the XML format, it is possible to embed an XML processing instruction in the XML

that instructs clients to transform the XML, using the referenced XSL Transformations (XSLT)

code . If this code is transforming the XML into (X)HTML, then it is possible to serve the

XML format, and yet have clients capable of performing the transformation display human-

friendly (X)HTML that is rendered and displayed at the client. Note that when using this method,

it is advisable to use XSLT 1.0 in order to maximize the number of clients capable of executing

the XSLT code.

[XSLT]

Appendix C. Using Problem Details with Other Formats

In some situations, it can be advantageous to embed problem details in formats other than those

described here. For example, an API that uses HTML might want to also use HTML for

expressing its problem details.

Problem details can be embedded in other formats either by encapsulating one of the existing

serializations (JSON or XML) into that format or by translating the model of a problem detail (as

specified in Section 3) into the format's conventions.

For example, in HTML, a problem could be embedded by encapsulating JSON in a script tag:

or by defining a mapping into a Resource Description Framework in Attributes (RDFa) .

This specification does not make specific recommendations regarding embedding problem

details in other formats; the appropriate way to embed them depends both upon the format in

use and application of that format.

[HTML5]

<script type="application/problem+json">

 {

 "type": "https://example.com/probs/out-of-credit",

 "title": "You do not have enough credit.",

 "detail": "Your current balance is 30, but that costs 50.",

 "instance": "/account/12345/msgs/abc",

 "balance": 30,

 "accounts": ["/account/12345",

 "/account/67890"]

 }

</script>

[RDFA]

Appendix D. Changes from RFC 7807

This revision has made the following changes:

Section 4.2 introduces a registry of common problem type URIs

Section 3 clarifies how multiple problems should be treated

Section 3.1.1 provides guidance for using type URIs that cannot be dereferenced

•

•

•

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 15

Acknowledgements

The authors would like to thank , , ,

, , , , , and for their

comments and suggestions.

Jan Algermissen Subbu Allamaraju Mike Amundsen Roy

Fielding Eran Hammer Sam Johnston Mike McCall Julian Reschke James Snell

Authors' Addresses

Mark Nottingham

Prahran

Australia

 mnot@mnot.net Email:

 https://www.mnot.net/ URI:

Erik Wilde

 erik.wilde@dret.net Email:

 http://dret.net/netdret/ URI:

Sanjay Dalal

United States of America

 sanjay.dalal@cal.berkeley.edu Email:

 https://github.com/sdatspun2 URI:

RFC 9457 Problem Details for HTTP APIs July 2023

Nottingham, et al. Standards Track Page 16

mailto:mnot@mnot.net
https://www.mnot.net/
mailto:erik.wilde@dret.net
http://dret.net/netdret/
mailto:sanjay.dalal@cal.berkeley.edu
https://github.com/sdatspun2

	RFC 9457
	Problem Details for HTTP APIs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. The Problem Details JSON Object
	3.1. Members of a Problem Details Object
	3.1.1. "type"
	3.1.2. "status"
	3.1.3. "title"
	3.1.4. "detail"
	3.1.5. "instance"

	3.2. Extension Members

	4. Defining New Problem Types
	4.1. Example
	4.2. Registered Problem Types
	4.2.1. about:blank

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. JSON Schema for HTTP Problems
	Appendix B. HTTP Problems and XML
	Appendix C. Using Problem Details with Other Formats
	Appendix D. Changes from RFC 7807
	Acknowledgements
	Authors' Addresses

 Problem Details for HTTP APIs

 Prahran
 Australia

 mnot@mnot.net
 https://www.mnot.net/

 erik.wilde@dret.net
 http://dret.net/netdret/

 United States of America

 sanjay.dalal@cal.berkeley.edu
 https://github.com/sdatspun2

 art
 httpapi
 status
 HTTP
 error
 problem
 API
 JSON
 XML

 This document defines a "problem detail" to carry machine-readable details of errors in HTTP response content to avoid the need to define new error response formats for HTTP APIs.
 This document obsoletes RFC 7807.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Requirements Language

 . The Problem Details JSON Object

 . Members of a Problem Details Object

 . "type"

 . "status"

 . "title"

 . "detail"

 . "instance"

 . Extension Members

 . Defining New Problem Types

 . Example

 . Registered Problem Types

 . about:blank

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . JSON Schema for HTTP Problems

 . HTTP Problems and XML

 . Using Problem Details with Other Formats

 . Changes from RFC 7807

 Acknowledgements

 Authors' Addresses

 Introduction
 HTTP status codes () cannot always convey enough information about errors to be helpful. While humans using web browsers can often understand an HTML response content, non-human consumers of HTTP APIs have difficulty doing so.
 To address that shortcoming, this specification defines simple JSON and XML document formats to describe the specifics of a problem encountered -- "problem details".
 For example, consider a response indicating that the client's account doesn't have enough credit. The API's designer might decide to use the 403 Forbidden status code to inform generic HTTP software (such as client libraries, caches, and proxies) of the response's general semantics. API-specific problem details (such as why the server refused the request and the applicable account balance) can be carried in the response content so that the client can act upon them appropriately (for example, triggering a transfer of more credit into the account).
 This specification identifies the specific "problem type" (e.g., "out of credit") with a URI . HTTP APIs can use URIs under their control to identify problems specific to them or can reuse existing ones to facilitate interoperability and leverage common semantics (see).
 Problem details can contain other information, such as a URI identifying the problem's specific occurrence (effectively giving an identifier to the concept "The time Joe didn't have enough credit last Thursday"), which can be useful for support or forensic purposes.
 The data model for problem details is a JSON object; when serialized as a JSON document, it uses the "application/problem+json" media type. defines an equivalent XML format, which uses the "application/problem+xml" media type.
 When they are conveyed in an HTTP response, the contents of problem details can be negotiated using proactive negotiation; see . In particular, the language used for human-readable strings (such as those in title and description) can be negotiated using the Accept-Language request header field (), although that negotiation may still result in a non-preferred, default representation being returned.
 Problem details can be used with any HTTP status code, but they most naturally fit the semantics of 4xx and 5xx responses. Note that problem details are (naturally) not the only way to convey the details of a problem in HTTP. If the response is still a representation of a resource, for example, it's often preferable to describe the relevant details in that application's format. Likewise, defined HTTP status codes cover many situations with no need to convey extra detail.
 This specification's aim is to define common error formats for applications that need one so that they aren't required to define their own or, worse, tempted to redefine the semantics of existing HTTP status codes. Even if an application chooses not to use it to convey errors, reviewing its design can help guide the design decisions faced when conveying errors in an existing format.
 See for a list of changes from .

 Requirements Language
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14 when, and only when, they
 appear in all capitals, as shown here.

 The Problem Details JSON Object
 The canonical model for problem details is a JSON object. When serialized in a JSON document, that format is identified with the "application/problem+json" media type.
 For example:

POST /purchase HTTP/1.1
Host: store.example.com
Content-Type: application/json
Accept: application/json, application/problem+json

{
 "item": 123456,
 "quantity": 2
}

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json
Content-Language: en

{
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["/account/12345",
 "/account/67890"]
}

 Here, the out-of-credit problem (identified by its type) indicates the reason for the 403 in "title", identifies the specific problem occurrence with "instance", gives occurrence-specific details in "detail", and adds two extensions: "balance" conveys the account's balance, and "accounts" lists links where the account can be topped up.
 When designed to accommodate it, problem-specific extensions can convey more than one instance of the same problem type. For example:

POST /details HTTP/1.1
Host: account.example.com
Accept: application/json

{
 "age": 42.3,
 "profile": {
 "color": "yellow"
 }
}

HTTP/1.1 422 Unprocessable Content
Content-Type: application/problem+json
Content-Language: en

{
 "type": "https://example.net/validation-error",
 "title": "Your request is not valid.",
 "errors": [
 {
 "detail": "must be a positive integer",
 "pointer": "#/age"
 },
 {
 "detail": "must be 'green', 'red' or 'blue'",
 "pointer": "#/profile/color"
 }
]
}

 The fictional problem type here defines the "errors" extension, an array that describes the details of each validation error. Each member is an object containing "detail" to describe the issue and "pointer" to locate the problem within the request's content using a JSON Pointer .
 When an API encounters multiple problems that do not share the same type, it is RECOMMENDED that the most relevant or urgent problem be represented in the response. While it is possible to create generic "batch" problem types that convey multiple, disparate types, they do not map well into HTTP semantics.
 Note also that the API has responded with the
 "application/problem+json" type, even though the client did not list it
 in Accept, as is allowed by HTTP (see).

 Members of a Problem Details Object
 Problem detail objects can have the following members. If a member's value type does not match the specified type, the member MUST be ignored -- i.e., processing will continue as if the member had not been present.

 "type"
 The "type" member is a JSON string containing a URI reference that identifies the problem type. Consumers MUST use the "type" URI (after resolution, if necessary) as the problem type's primary identifier.
 When this member is not present, its value is assumed to be "about:blank".
 If the type URI is a locator (e.g., those with an "http" or "https" scheme), dereferencing it SHOULD provide human-readable documentation for the problem type (e.g., using HTML). However, consumers SHOULD NOT automatically dereference the type URI, unless they do so when providing information to developers (e.g., when a debugging tool is in use).
 When "type" contains a relative URI, it is resolved relative to the document's base URI, as per . However, using relative URIs can cause confusion, and they might not be handled correctly by all implementations.
 For example, if the two resources "https://api.example.org/foo/bar/123" and "https://api.example.org/widget/456" both respond with a "type" equal to the relative URI reference "example-problem", when resolved they will identify different resources ("https://api.example.org/foo/bar/example-problem" and "https://api.example.org/widget/example-problem", respectively). As a result, it is RECOMMENDED that absolute URIs be used in "type" when possible and that when relative URIs are used, they include the full path (e.g., "/types/123").
 The type URI is allowed to be a non-resolvable URI. For example, the tag URI scheme can be used to uniquely identify problem types:

tag:example@example.org,2021-09-17:OutOfLuck

 However, resolvable type URIs are encouraged by this specification because it might become desirable to resolve the URI in the future. For example, if an API designer used the URI above and later adopted a tool that resolves type URIs to discover information about the error, taking advantage of that capability would require switching to a resolvable URI, creating a new identity for the problem type and thus introducing a breaking change.

 "status"
 The "status" member is a JSON number indicating the HTTP status code () generated by the origin server for this occurrence of the problem.
 The "status" member, if present, is only advisory; it conveys the HTTP status code used for the convenience of the consumer. Generators MUST use the same status code in the actual HTTP response, to assure that generic HTTP software that does not understand this format still behaves correctly. See for further caveats regarding its use.
 Consumers can use the status member to determine what the original status code used by the generator was when it has been changed (e.g., by an intermediary or cache) and when a message's content is persisted without HTTP information. Generic HTTP software will still use the HTTP status code.

 "title"
 The "title" member is a JSON string containing a short, human-readable summary of the problem type.
 It SHOULD NOT change from occurrence to occurrence of the problem, except for localization (e.g., using proactive content negotiation; see).
 The "title" string is advisory and is included only for users who are unaware of and cannot discover the semantics of the type URI (e.g., during offline log analysis).

 "detail"
 The "detail" member is a JSON string containing a human-readable explanation specific to this occurrence of the problem.
 The "detail" string, if present, ought to focus on helping the client correct the problem, rather than giving debugging information.
 Consumers SHOULD NOT parse the "detail" member for information; extensions are more suitable and less error-prone ways to obtain such information.

 "instance"
 The "instance" member is a JSON string containing a URI reference that identifies the specific occurrence of the problem.
 When the "instance" URI is dereferenceable, the problem details object can be fetched from it. It might also return information about the problem occurrence in other formats through use of proactive content negotiation (see).
 When the "instance" URI is not dereferenceable, it serves as a unique identifier for the problem occurrence that may be of significance to the server but is opaque to the client.
 When "instance" contains a relative URI, it is resolved relative to the document's base URI, as per . However, using relative URIs can cause confusion, and they might not be handled correctly by all implementations.
 For example, if the two resources "https://api.example.org/foo/bar/123" and "https://api.example.org/widget/456" both respond with an "instance" equal to the relative URI reference "example-instance", when resolved they will identify different resources ("https://api.example.org/foo/bar/example-instance" and "https://api.example.org/widget/example-instance", respectively). As a result, it is RECOMMENDED that absolute URIs be used in "instance" when possible, and that when relative URIs are used, they include the full path (e.g., "/instances/123").

 Extension Members
 Problem type definitions MAY extend the problem details object with additional members that are specific to that problem type.
 For example, our out-of-credit problem above defines two such extensions -- "balance" and "accounts" to convey additional, problem-specific information.
 Similarly, the "validation error" example defines an "errors" extension that contains a list of individual error occurrences found, with details and a pointer to the location of each.
 Clients consuming problem details MUST ignore any such extensions that they don't recognize; this allows problem types to evolve and include additional information in the future.
 When creating extensions, problem type authors should choose their names carefully. To be used in the XML format (see), they will need to conform to the Name rule in .

 Defining New Problem Types
 When an HTTP API needs to define a response that indicates an error condition, it might be appropriate to do so by defining a new problem type.
 Before doing so, it's important to understand what they are good for and what is better left to other mechanisms.
 Problem details are not a debugging tool for the underlying implementation; rather, they are a way to expose greater detail about the HTTP interface itself. Designers of new problem types need to carefully take into account the Security Considerations, in particular, the risk of exposing attack vectors by exposing implementation internals through error messages.
 Likewise, truly generic problems -- i.e., conditions that might apply to any resource on the Web -- are usually better expressed as plain status codes. For example, a "write access disallowed" problem is probably unnecessary, since a 403 Forbidden status code in response to a PUT request is self-explanatory.
 Finally, an application might have a more appropriate way to carry an error in a format that it already defines. Problem details are intended to avoid the necessity of establishing new "fault" or "error" document formats, not to replace existing domain-specific formats.
 That said, it is possible to add support for problem details to existing HTTP APIs using HTTP content negotiation (e.g., using the Accept request header to indicate a preference for this format; see).
 New problem type definitions MUST document:

	 a type URI (typically, with the "http" or "https" scheme)
 a title that appropriately describes it (think short)
 the HTTP status code for it to be used with

 Problem type definitions MAY specify the use of the Retry-After response header () in appropriate circumstances.
 A problem type URI SHOULD resolve to HTML documentation that explains how to resolve the problem.
 A problem type definition MAY specify additional members on the problem details object.

For example, an extension might use typed links to another resource that machines can use to resolve the problem.
 If such additional members are defined, their names SHOULD start with a letter (ALPHA, as per) and SHOULD comprise characters from ALPHA, DIGIT (), and "_" (so that it can be serialized in formats other than JSON), and they SHOULD be three characters or longer.

 Example
 For example, if you are publishing an HTTP API to your online shopping cart, you might need to indicate that the user is out of credit (our example from above) and therefore cannot make the purchase.
 If you already have an application-specific format that can accommodate this information, it's probably best to do that. However, if you don't, you might use one of the problem detail formats -- JSON if your API is JSON-based or XML if it uses that format.
 To do so, you might look in the registry () for an already-defined type URI that suits your purposes. If one is available, you can reuse that URI.
 If one isn't available, you could mint and document a new type URI (which ought to be under your control and stable over time), an appropriate title and the HTTP status code that it will be used with, along with what it means and how it should be handled.

 Registered Problem Types
 This specification defines the "HTTP Problem Types" registry for common, widely used problem type URIs, to promote reuse.
 The policy for this registry is Specification Required, per .
 When evaluating requests, the designated expert(s) should consider community feedback, how well-defined the problem type is, and this specification's requirements. Vendor-specific, application-specific, and deployment-specific values are unable to be registered. Specification documents should be published in a stable, freely available manner (ideally located with a URL) but need not be standards.
 Registrations MAY use the prefix " " for the type URI. Note that those URIs may not be able to be resolved.
 The following template should be used for registration requests:

 Type URI:
 [a URI for the problem type]
 Title:
 [a short description of the problem type]
 Recommended HTTP status code:
 [what status code is most appropriate to use with the type]
 Reference:
 [to a specification defining the type]

 See the registry at for details on where to send registration requests.

 about:blank
 This specification registers one Problem Type, "about:blank", as follows.

 Type URI:
 about:blank
 Title:
 See HTTP Status Code
 Recommended HTTP status code:
 N/A
 Reference:
 RFC 9457

 The "about:blank" URI , when used as a problem type, indicates that the problem has no additional semantics beyond that of the HTTP status code.
 When "about:blank" is used, the title SHOULD be the same as the recommended HTTP status phrase for that code (e.g., "Not Found" for 404, and so on), although it MAY be localized to suit client preferences (expressed with the Accept-Language request header).
 Please note that according to how the "type" member is defined (), the "about:blank" URI is the default value for that member. Consequently, any problem details object not carrying an explicit "type" member implicitly uses this URI.

 Security Considerations
 When defining a new problem type, the information included must be carefully vetted. Likewise, when actually generating a problem -- however it is serialized -- the details given must also be scrutinized.
 Risks include leaking information that can be exploited to compromise the system, access to the system, or the privacy of users of the system.
 Generators providing links to occurrence information are encouraged to avoid making implementation details such as a stack dump available through the HTTP interface, since this can expose sensitive details of the server implementation, its data, and so on.
 The "status" member duplicates the information available in the HTTP status code itself, bringing the possibility of disagreement between the two. Their relative precedence is not clear, since a disagreement might indicate that (for example) an intermediary has changed the HTTP status code in transit (e.g., by a proxy or cache). Generic HTTP software (such as proxies, load balancers, firewalls, and virus scanners) are unlikely to know of or respect the status code conveyed in this member.

 IANA Considerations
 In the "application" registry under the "Media Types" registry, IANA has updated the "application/problem+json" and "application/problem+xml" registrations to refer to this document.
 IANA has created the "HTTP Problem Types" registry as specified in and populated it with "about:blank" as per .

 References

 Normative References

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 W3C Recommendation REC-xml-20081126

 Informative References

 The "about" URI Scheme

 This document describes the "about" URI scheme, which is widely used by Web browsers and some other applications to designate access to their internal resources, such as settings, application information, hidden built-in functionality, and so on. This document is not an Internet Standards Track specification; it is published for informational purposes.

 HTML: Living Standard

 WHATWG

 Information technology -- Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG

 ISO

 JavaScript Object Notation (JSON) Pointer

 JSON Pointer defines a string syntax for identifying a specific value within a JavaScript Object Notation (JSON) document.

 JSON Schema: A Media Type for Describing JSON Documents

 Postman

 Work in Progress

 RDFa Core 1.1 - Third Edition

 W3C Recommendation

 Problem Details for HTTP APIs

 This document defines a "problem detail" as a way to carry machine- readable details of errors in a HTTP response to avoid the need to define new error response formats for HTTP APIs.

 The 'tag' URI Scheme

 This document describes the "tag" Uniform Resource Identifier (URI) scheme. Tag URIs (also known as "tags") are designed to be unique across space and time while being tractable to humans. They are distinct from most other URIs in that they have no authoritative resolution mechanism. A tag may be used purely as an entity identifier. Furthermore, using tags has some advantages over the common practice of using "http" URIs as identifiers for non-HTTP-accessible resources. This memo provides information for the Internet community.

 Web Linking

 This specification defines a model for the relationships between resources on the Web ("links") and the type of those relationships ("link relation types").
 It also defines the serialisation of such links in HTTP headers with the Link header field.

 Associating Style Sheets with XML documents 1.0 (Second Edition)

 W3C Recommendation

 JSON Schema for HTTP Problems
 This section presents a non-normative JSON Schema for HTTP problem details. If there is any disagreement between it and the text of the specification, the latter prevails.

NOTE: '\' line wrapping per RFC 8792
{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "title": "An RFC 7807 problem object",
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "format": "uri-reference",
 "description": "A URI reference that identifies the \
problem type."
 },
 "title": {
 "type": "string",
 "description": "A short, human-readable summary of the \
problem type."
 },
 "status": {
 "type": "integer",
 "description": "The HTTP status code \
generated by the origin server for this occurrence of the problem.",
 "minimum": 100,
 "maximum": 599
 },
 "detail": {
 "type": "string",
 "description": "A human-readable explanation specific to \
this occurrence of the problem."
 },
 "instance": {
 "type": "string",
 "format": "uri-reference",
 "description": "A URI reference that identifies the \
specific occurrence of the problem. It may or may not yield \
further information if dereferenced."
 }
 }
}

 HTTP Problems and XML
 HTTP-based APIs that use XML can express problem details using the format defined in this appendix.
 The RELAX NG schema for the XML format is:

 default namespace ns = "urn:ietf:rfc:7807"

 start = problem

 problem =
 element problem {
 (element type { xsd:anyURI }?
 & element title { xsd:string }?
 & element detail { xsd:string }?
 & element status { xsd:positiveInteger }?
 & element instance { xsd:anyURI }?),
 anyNsElement
 }

 anyNsElement =
 (element ns:* { anyNsElement | text }
 | attribute * { text })*

 Note that this schema is only intended as documentation and not as a normative schema that captures all constraints of the XML format. It is possible to use other XML schema languages to define a similar set of constraints (depending on the features of the chosen schema language).
 The media type for this format is "application/problem+xml".
 Extension arrays and objects are serialized into the XML format by considering an element containing a child or children to represent an object, except for elements containing only one or more child elements named "i", which are considered arrays. For example, the example above appears in XML as follows:

HTTP/1.1 403 Forbidden
Content-Type: application/problem+xml
Content-Language: en

<?xml version="1.0" encoding="UTF-8"?>
<problem xmlns="urn:ietf:rfc:7807">
 <type>https://example.com/probs/out-of-credit</type>
 <title>You do not have enough credit.</title>
 <detail>Your current balance is 30, but that costs 50.</detail>
 <instance>https://example.net/account/12345/msgs/abc</instance>
 <balance>30</balance>
 <accounts>
 <i>https://example.net/account/12345</i>
 <i>https://example.net/account/67890</i>
 </accounts>
</problem>

 This format uses an XML namespace, primarily to allow embedding it into other XML-based formats; it does not imply that it can or should be extended with elements or attributes in other namespaces. The RELAX NG schema explicitly only allows elements from the one namespace used in the XML format. Any extension arrays and objects MUST be serialized into XML markup using only that namespace.
 When using the XML format, it is possible to embed an XML processing instruction in the XML that instructs clients to transform the XML, using the referenced XSL Transformations (XSLT) code . If this code is transforming the XML into (X)HTML, then it is possible to serve the XML format, and yet have clients capable of performing the transformation display human-friendly (X)HTML that is rendered and displayed at the client. Note that when using this method, it is advisable to use XSLT 1.0 in order to maximize the number of clients capable of executing the XSLT code.

 Using Problem Details with Other Formats
 In some situations, it can be advantageous to embed problem details in formats other than those described here. For example, an API that uses HTML might want to also use HTML for expressing its problem details.
 Problem details can be embedded in other formats either by encapsulating one of the existing serializations (JSON or XML) into that format or by translating the model of a problem detail (as specified in) into the format's conventions.
 For example, in HTML, a problem could be embedded by encapsulating JSON in a script tag:

<script type="application/problem+json">
 {
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["/account/12345",
 "/account/67890"]
 }
</script>

 or by defining a mapping into a Resource Description
 Framework in Attributes (RDFa) .
 This specification does not make specific recommendations regarding embedding problem details in other formats; the appropriate way to embed them depends both upon the format in use and application of that format.

 Changes from RFC 7807
 This revision has made the following changes:

 introduces a registry of common problem
 type URIs

 clarifies how multiple problems
 should be treated

 provides guidance for using type URIs that
 cannot be dereferenced

 Acknowledgements
 The authors would like to thank
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 , and

for their comments and suggestions.

 Authors' Addresses

 Prahran
 Australia

 mnot@mnot.net
 https://www.mnot.net/

 erik.wilde@dret.net
 http://dret.net/netdret/

 United States of America

 sanjay.dalal@cal.berkeley.edu
 https://github.com/sdatspun2

