
RFC 9335

Completely Encrypting RTP Header Extensions and

Contributing Sources

Abstract

While the Secure Real-time Transport Protocol (SRTP) provides confidentiality for the contents of

a media packet, a significant amount of metadata is left unprotected, including RTP header

extensions and contributing sources (CSRCs). However, this data can be moderately sensitive in

many applications. While there have been previous attempts to protect this data, they have had

limited deployment, due to complexity as well as technical limitations.

This document updates RFC 3711, the SRTP specification, and defines Cryptex as a new

mechanism that completely encrypts header extensions and CSRCs and uses simpler Session

Description Protocol (SDP) signaling with the goal of facilitating deployment.

Stream:

RFC:

Updates:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9335

3711

Standards Track

January 2023

2070-1721

 J. Uberti C. Jennings

Cisco

S. Garcia Murillo

Millicast

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9335

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

Uberti, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9335
https://www.rfc-editor.org/rfc/rfc3711
https://www.rfc-editor.org/info/rfc9335

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Problem Statement

1.2. Previous Solutions

1.3. Goals

2. Terminology

3. Design

4. SDP Considerations

5. RTP Header Processing

5.1. Sending

5.2. Receiving

6. Encryption and Decryption

6.1. Packet Structure

6.2. Encryption Procedure

6.3. Decryption Procedure

7. Backward Compatibility

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Test Vectors

A.1. AES-CTR

A.1.1. RTP Packet with One-Byte Header Extension

A.1.2. RTP Packet with Two-Byte Header Extension

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

A.1.3. RTP Packet with One-Byte Header Extension and CSRC Fields

A.1.4. RTP Packet with Two-Byte Header Extension and CSRC Fields

A.1.5. RTP Packet with Empty One-Byte Header Extension and CSRC Fields

A.1.6. RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

A.2. AES-GCM

A.2.1. RTP Packet with One-Byte Header Extension

A.2.2. RTP Packet with Two-Byte Header Extension

A.2.3. RTP Packet with One-Byte Header Extension and CSRC Fields

A.2.4. RTP Packet with Two-Byte Header Extension and CSRC Fields

A.2.5. RTP Packet with Empty One-Byte Header Extension and CSRC Fields

A.2.6. RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

Acknowledgements

Authors' Addresses

1. Introduction

1.1. Problem Statement

The Secure Real-time Transport Protocol (SRTP) mechanism provides message

authentication for the entire RTP packet but only encrypts the RTP payload. This has not

historically been a problem, as much of the information carried in the header has minimal

sensitivity (e.g., RTP timestamp); in addition, certain fields need to remain as cleartext because

they are used for key scheduling (e.g., RTP synchronization source (SSRC) and sequence number).

However, as noted in , the security requirements can be different for information

carried in RTP header extensions, including the per-packet sound levels defined in and

, which are specifically noted as being sensitive in the Security Considerations sections

of those RFCs.

In addition to the contents of the header extensions, there are now enough header extensions in

active use that the header extension identifiers themselves can provide meaningful information

in terms of determining the identity of the endpoint and/or application. Accordingly, these

identifiers can be considered a fingerprinting issue.

Finally, the CSRCs included in RTP packets can also be sensitive, potentially allowing a network

eavesdropper to determine who was speaking and when during an otherwise secure conference

call.

[RFC3711]

[RFC6904]

[RFC6464]

[RFC6465]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 3

1.2. Previous Solutions

Encryption of Header Extensions in SRTP was proposed in 2013 as a solution to the

problem of unprotected header extension values. However, it has not seen significant adoption

and has a few technical shortcomings.

First, the mechanism is complicated. Since it allows encryption to be negotiated on a per-

extension basis, a fair amount of signaling logic is required. And in the SRTP layer, a somewhat

complex transform is required to allow only the selected header extension values to be

encrypted. One of the most popular SRTP implementations had a significant bug in this area that

was not detected for five years.

Second, the mechanism only protects the header extension values and not their identifiers or

lengths. It also does not protect the CSRCs. As noted above, this leaves a fair amount of potentially

sensitive information exposed.

Third, the mechanism bloats the header extension space. Because each extension must be offered

in both unencrypted and encrypted forms, twice as many header extensions must be offered,

which will in many cases push implementations past the 14-extension limit for the use of one-

byte extension headers defined in . Accordingly, in many cases, implementations will

need to use two-byte headers, which are not supported well by some existing implementations.

Finally, the header extension bloat combined with the need for backward compatibility results in

additional wire overhead. Because two-byte extension headers may not be handled well by

existing implementations, one-byte extension identifiers will need to be used for the

unencrypted (backward-compatible) forms, and two-byte for the encrypted forms. Thus,

deployment of encryption for header extensions will typically result in multiple extra

bytes in each RTP packet, compared to the present situation.

[RFC6904]

[RFC8285]

[RFC6904]

1.3. Goals

From the previous analysis, the desired properties of a solution are:

Built on the existing SRTP framework (simple to understand)

Built on the existing header extension framework (simple to implement)

Protection of header extension identifiers, lengths, and values

Protection of CSRCs when present

Simple signaling

Simple crypto transform and SRTP interactions

Backward compatibility with unencrypted endpoints, if desired

Backward compatibility with existing RTP tooling

• [RFC3711]

• [RFC8285]

•

•

•

•

•

•

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 4

The last point deserves further discussion. While other possible solutions that would have

encrypted more of the RTP header (e.g., the number of CSRCs) were considered, the inability to

parse the resultant packets with current tools and a generally higher level of complexity

outweighed the slight improvement in confidentiality in these solutions. Hence, a more

pragmatic approach was taken to solve the problem described in Section 1.1.

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Design

This specification proposes a mechanism to negotiate encryption of all RTP header extensions

(ids, lengths, and values) as well as CSRC values. It reuses the existing SRTP framework, is

accordingly simple to implement, and is backward compatible with existing RTP packet parsing

code, even when support for the mechanism has been negotiated.

Except when explicitly stated otherwise, Cryptex reuses all the framework procedures,

transforms, and considerations described in .[RFC3711]

4. SDP Considerations

Cryptex support is indicated via a new "a=cryptex" SDP attribute defined in this specification.

The new "a=cryptex" attribute is a property attribute as defined in ; it

therefore takes no value and can be used at the session level or media level.

The presence of the "a=cryptex" attribute in the SDP (in either an offer or an answer) indicates

that the endpoint is capable of receiving RTP packets encrypted with Cryptex, as defined below.

Once each peer has verified that the other party supports receiving RTP packets encrypted with

Cryptex, senders can unilaterally decide whether or not to use the Cryptex mechanism on a per-

packet basis.

If BUNDLE is in use as per and the "a=cryptex" attribute is present for a media line, it

 be present for all RTP-based "m=" sections belonging to the same bundle group. This

ensures that the encrypted Media Identifier (MID) header extensions can be processed, allowing

RTP streams to be associated with the correct "m=" section in each BUNDLE group as specified in

. When used with BUNDLE, this attribute is assigned to the TRANSPORT

category .

Section 5.13 of [RFC8866]

[RFC9143]

MUST

Section 9.2 of [RFC9143]

[RFC8859]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8866#section-5.13
https://www.rfc-editor.org/rfc/rfc9143#section-9.2

Both endpoints can change the Cryptex support status by modifying the session as specified in

. Generating subsequent SDP offers and answers use the same

procedures for including the "a=cryptex" attribute as the ones on the initial offer and answer.

Section 8 of [RFC3264] MUST

5. RTP Header Processing

A General Mechanism for RTP Header Extensions defines two values for the "defined

by profile" field for carrying one-byte and two-byte header extensions. In order to allow a

receiver to determine if an incoming RTP packet is using the encryption scheme in this

specification, two new values are defined:

0xC0DE for the encrypted version of the one-byte header extensions (instead of 0xBEDE).

0xC2DE for the encrypted versions of the two-byte header extensions (instead of 0x100).

In the case of using two-byte header extensions, the extension identifier with value 256

 be negotiated, as the value of this identifier is meant to be contained in the "appbits" of the

"defined by profile" field, which are not available when using the values above.

Note that as per , it is not possible to mix one-byte and two-byte headers on the same

RTP packet. Mixing one-byte and two-byte headers on the same RTP stream requires negotiation

of the "extmap-allow-mixed" SDP attribute as defined in .

Peers negotiate both Cryptex and the Encryption of Header Extensions mechanism defined

in via SDP offer/answer as described in Section 4, and if both mechanisms are

supported, either one can be used for any given packet. However, if a packet is encrypted with

Cryptex, it also use header extension encryption , and vice versa.

If one of the peers has advertised the ability to receive both Cryptex and header extensions

encrypted as per in the SDP exchange, it is that the other peer use

Cryptex rather than the mechanism in when sending RTP packets so that all the

header extensions and CSRCS are encrypted. However, if there is a compelling reason to use the

mechanism in (e.g., a need for some header extensions to be sent in the clear so that so

they are processable by RTP middleboxes), the other peer use the mechanism in

 instead.

[RFC8285]

•

•

MUST

NOT

[RFC8285]

Section 6 of [RFC8285]

MAY

[RFC6904]

MUST NOT [RFC6904]

[RFC6904] RECOMMENDED

[RFC6904]

[RFC6904]

SHOULD

[RFC6904]

5.1. Sending

When the mechanism defined by this specification has been negotiated, sending an RTP packet

that has any CSRCs or contains any header extensions follows the steps below. This

mechanism be used with header extensions other than the variety described in

.

If the RTP packet contains one-byte headers, the 16-bit RTP header extension tag be set to

0xC0DE to indicate that the encryption has been applied and the one-byte framing is being used.

If the RTP packet contains two-byte headers, the header extension tag be set to 0xC2DE to

indicate encryption has been applied and the two-byte framing is being used.

[RFC8285]

MUST NOT

[RFC8285]

MUST

MUST

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc3264#section-8
https://www.rfc-editor.org/rfc/rfc8285#section-6

If the packet contains CSRCs but no header extensions, an empty extension block consisting of

the 0xC0DE tag and a 16-bit length field set to zero (explicitly permitted by) be

appended, and the X bit be set to 1 to indicate an extension block is present. This is

necessary to provide the receiver an indication that the CSRCs in the packet are encrypted.

The RTP packet then be encrypted as described in Section 6.2 ("Encryption Procedure").

[RFC3550] MUST

MUST

MUST

5.2. Receiving

When receiving an RTP packet that contains header extensions, the "defined by profile" field

 be checked to ensure the payload is formatted according to this specification. If the field

does not match one of the values defined above, the implementation instead handle it

according to the specification that defines that value.

Alternatively, if the implementation considers the use of this specification mandatory and the

"defined by profile" field does not match one of the values defined above, it stop the

processing of the RTP packet and report an error for the RTP stream.

If the RTP packet passes this check, it is then decrypted as described in Section 6.3 ("Decryption

Procedure") and passed to the next layer to process the packet and its extensions. In the event

that a zero-length extension block was added as indicated above, it can be left as is and will be

processed normally.

MUST

MUST

MUST

6. Encryption and Decryption

6.1. Packet Structure

When this mechanism is active, the SRTP packet is protected as follows:

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 7

Note that, as required by , the 4 bytes at the start of the extension block are not

encrypted.

Specifically, the Encrypted Portion include any CSRC identifiers, any RTP header extension

(except for the first 4 bytes), and the RTP payload.

Figure 1: A Protected SRTP Packet

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+<+

 |V=2|P|X| CC |M| PT | sequence number | |

 +-+ |

 | timestamp | |

 +-+ |

 | synchronization source (SSRC) identifier | |

+>+=+ |

| | contributing source (CSRC) identifiers | |

| | | |

+>+-+ |

X | 0xC0 or 0xC2 | 0xDE | length | |

+>+-+ |

| | RFC 8285 header extensions | |

| +-+ |

| | payload ... | |

| | +-------------------------------+ |

| | | RTP padding | RTP pad count | |

+>+-+<+

| ~ SRTP Master Key Identifier (MKI) (OPTIONAL) ~ |

| +-+ |

| : authentication tag (RECOMMENDED) : |

| +-+ |

| |

+- Encrypted Portion Authenticated Portion ---+

[RFC8285]

MUST

6.2. Encryption Procedure

The encryption procedure is identical to that of except for the Encrypted Portion of the

SRTP packet. The plaintext input to the cipher is as follows:

Here "header extension data" refers to the content of the RTP extension field, excluding the first

four bytes (the extension header). The first 4 * CSRC count (CC) bytes of the

ciphertext are placed in the CSRC field of the RTP header. The remainder of the ciphertext is the

RTP payload of the encrypted packet.

To minimize changes to surrounding code, the encryption mechanism can choose to replace a

"defined by profile" field from with its counterpart defined in Section 5 ("RTP Header

Processing") and encrypt at the same time.

[RFC3711]

Plaintext = CSRC identifiers (if used) || header extension data ||

 RTP payload || RTP padding (if used) || RTP pad count (if used)

[RFC8285]

[RFC8285]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 8

For Authenticated Encryption with Associated Data (AEAD) ciphers (e.g., AES-GCM), the 12-byte

fixed header and the four-byte header extension header (the "defined by profile" field and the

length) are considered additional authenticated data (AAD), even though they are non-

contiguous in the packet if CSRCs are present.

Here "fixed header" refers to the 12-byte fixed portion of the RTP header, and "extension header"

refers to the four-byte extension header ("defined by profile" and extension length).

Implementations can rearrange a packet so that the AAD and plaintext are contiguous by

swapping the order of the extension header and the CSRC identifiers, resulting in an

intermediate representation of the form shown in Figure 2. After encryption, the CSRCs (now

encrypted) and extension header would need to be swapped back to their original positions. A

similar operation can be done when decrypting to create contiguous ciphertext and AAD inputs.

Note that this intermediate representation is only displayed as reference for implementations

and is not meant to be sent on the wire.

Associated Data: fixed header || extension header (if X=1)

[RFC8285]

Figure 2: An RTP Packet Transformed to Make Cryptex Cipher Inputs Contiguous

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+<+

 |V=2|P|X| CC |M| PT | sequence number | |

 +-+ |

 | timestamp | |

 +-+ |

 | synchronization source (SSRC) identifier | |

 +-+ |

 | 0xC0 or 0xC2 | 0xDE | length | |

+>+=+<+

| | contributing source (CSRC) identifiers | |

| | | |

| +-+ |

| | RFC 8285 header extensions | |

| +-+ |

| | payload ... | |

| | +-------------------------------+ |

| | | RTP padding | RTP pad count | |

+>+-+ |

| |

+- Plaintext Input AAD Input ---+

6.3. Decryption Procedure

The decryption procedure is identical to that of except for the Encrypted Portion of the

SRTP packet, which is as shown in the section above.

[RFC3711]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 9

To minimize changes to surrounding code, the decryption mechanism can choose to replace the

"defined by profile" field with its no-encryption counterpart from and decrypt at the

same time.

[RFC8285]

7. Backward Compatibility

This specification attempts to encrypt as much as possible without interfering with backward

compatibility for systems that expect a certain structure from an RTPv2 packet, including

systems that perform demultiplexing based on packet headers. Accordingly, the first two bytes of

the RTP packet are not encrypted.

This specification also attempts to reuse the key scheduling from SRTP, which depends on the

RTP packet sequence number and SSRC identifier. Accordingly, these values are also not

encrypted.

8. Security Considerations

All security considerations in are applicable to this specification; the

exception is Section 9.4, because confidentiality of the RTP Header is the purpose of this

specification.

The risks of using weak or NULL authentication with SRTP, described in ,

apply to encrypted header extensions as well.

This specification extends SRTP by expanding the Encrypted Portion of the RTP packet, as shown

in Section 6.1 ("Packet Structure"). It does not change how SRTP authentication works in any way.

Given that more of the packet is being encrypted than before, this is necessarily an improvement.

The RTP fields that are left unencrypted (see rationale above) are as follows:

RTP version

padding bit

extension bit

number of CSRCs

marker bit

payload type

sequence number

timestamp

SSRC identifier

number of header extensions

These values contain a fixed set (i.e., one that won't be changed by extensions) of information

that, at present, is observed to have low sensitivity. In the event any of these values need to be

encrypted, SRTP is likely the wrong protocol to use and a fully encapsulating protocol such as

DTLS is preferred (with its attendant per-packet overhead).

Section 9 of [RFC3711]

Section 9.5 of [RFC3711]

•

•

•

•

•

•

•

•

•

• [RFC8285]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc3711#section-9
https://www.rfc-editor.org/rfc/rfc3711#section-9.4
https://www.rfc-editor.org/rfc/rfc3711#section-9.5

[RFC2119]

[RFC3264]

[RFC3550]

[RFC3711]

10. References

10.1. Normative References

, , ,

, , March 1997,

.

 and ,

, , , June 2002,

.

, , , and ,

, , , ,

July 2003, .

, , , , and ,

, , , March

2004, .

Contact name:

Contact email address:

Attribute name:

Attribute syntax:

Attribute semantics:

Attribute value:

Usage level:

Charset dependent:

Purpose:

O/A procedures:

Mux Category:

9. IANA Considerations

This document updates the "attribute-name (formerly "att-field")" subregistry of the "Session

Description Protocol (SDP) Parameters" registry (see). Specifically, it

adds the SDP "a=cryptex" attribute for use at both the media level and the session level.

IETF AVT Working Group or IESG if the AVT Working Group is closed

avt@ietf.org

cryptex

This attribute takes no values.

N/A

N/A

session, media

No

The presence of this attribute in the SDP indicates that the endpoint is capable of

receiving RTP packets encrypted with Cryptex as described in this document.

SDP O/A procedures are described in Section 4 of this document.

TRANSPORT

Section 8.2.4 of [RFC8866]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Rosenberg, J. H. Schulzrinne "An Offer/Answer Model with Session

Description Protocol (SDP)" RFC 3264 DOI 10.17487/RFC3264

<https://www.rfc-editor.org/info/rfc3264>

Schulzrinne, H. Casner, S. Frederick, R. V. Jacobson "RTP: A Transport

Protocol for Real-Time Applications" STD 64 RFC 3550 DOI 10.17487/RFC3550

<https://www.rfc-editor.org/info/rfc3550>

Baugher, M. McGrew, D. Naslund, M. Carrara, E. K. Norrman "The Secure

Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/info/rfc3711>

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc8866#section-8.2.4
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3711

[RFC8174]

[RFC8285]

[RFC8859]

[RFC8866]

[RFC9143]

[RFC6464]

[RFC6465]

[RFC6904]

[RFC7714]

, ,

, , , May 2017,

.

, , and ,

, , , October 2017,

.

,

, , , January 2021,

.

, , , and ,

, , , January 2021,

.

, , and ,

, , ,

February 2022, .

10.2. Informative References

, , and ,

, ,

, December 2011, .

, , and ,

, ,

, December 2011,

.

,

, , , April 2013,

.

 and ,

, , , December

2015, .

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Singer, D. Desineni, H. R. Even, Ed. "A General Mechanism for RTP Header

Extensions" RFC 8285 DOI 10.17487/RFC8285 <https://www.rfc-

editor.org/info/rfc8285>

Nandakumar, S. "A Framework for Session Description Protocol (SDP)

Attributes When Multiplexing" RFC 8859 DOI 10.17487/RFC8859

<https://www.rfc-editor.org/info/rfc8859>

Begen, A. Kyzivat, P. Perkins, C. M. Handley "SDP: Session Description

Protocol" RFC 8866 DOI 10.17487/RFC8866 <https://www.rfc-

editor.org/info/rfc8866>

Holmberg, C. Alvestrand, H. C. Jennings "Negotiating Media Multiplexing

Using the Session Description Protocol (SDP)" RFC 9143 DOI 10.17487/RFC9143

<https://www.rfc-editor.org/info/rfc9143>

Lennox, J., Ed. Ivov, E. E. Marocco "A Real-time Transport Protocol (RTP)

Header Extension for Client-to-Mixer Audio Level Indication" RFC 6464 DOI

10.17487/RFC6464 <https://www.rfc-editor.org/info/rfc6464>

Ivov, E., Ed. Marocco, E., Ed. J. Lennox "A Real-time Transport Protocol

(RTP) Header Extension for Mixer-to-Client Audio Level Indication" RFC 6465

DOI 10.17487/RFC6465 <https://www.rfc-editor.org/info/

rfc6465>

Lennox, J. "Encryption of Header Extensions in the Secure Real-time Transport

Protocol (SRTP)" RFC 6904 DOI 10.17487/RFC6904 <https://www.rfc-

editor.org/info/rfc6904>

McGrew, D. K. Igoe "AES-GCM Authenticated Encryption in the Secure Real-

time Transport Protocol (SRTP)" RFC 7714 DOI 10.17487/RFC7714

<https://www.rfc-editor.org/info/rfc7714>

Appendix A. Test Vectors

All values are in hexadecimal and represented in network order (big endian).

A.1. AES-CTR

The following subsections list the test vectors for using Cryptex with AES-CTR as per .

Common values are organized as follows:

[RFC3711]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 12

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8285
https://www.rfc-editor.org/info/rfc8285
https://www.rfc-editor.org/info/rfc8859
https://www.rfc-editor.org/info/rfc8866
https://www.rfc-editor.org/info/rfc8866
https://www.rfc-editor.org/info/rfc9143
https://www.rfc-editor.org/info/rfc6464
https://www.rfc-editor.org/info/rfc6465
https://www.rfc-editor.org/info/rfc6465
https://www.rfc-editor.org/info/rfc6904
https://www.rfc-editor.org/info/rfc6904
https://www.rfc-editor.org/info/rfc7714

Rollover Counter: 00000000

Master Key: e1f97a0d3e018be0d64fa32c06de4139

Master Salt: 0ec675ad498afeebb6960b3aabe6

Crypto Suite: AES_CM_128_HMAC_SHA1_80

Session Key: c61e7a93744f39ee10734afe3ff7a087

Session Salt: 30cbbc08863d8c85d49db34a9ae1

Authentication Key: cebe321f6ff7716b6fd4ab49af256a156d38baa4

A.1.1. RTP Packet with One-Byte Header Extension

RTP Packet:

Encrypted RTP Packet:

 900f1235

 decafbad

 cafebabe

 bede0001

 51000200

 abababab

 abababab

 abababab

 abababab

 900f1235

 decafbad

 cafebabe

 c0de0001

 eb923652

 51c3e036

 f8de27e9

 c27ee3e0

 b4651d9f

 bc4218a7

 0244522f

 34a5

A.1.2. RTP Packet with Two-Byte Header Extension

RTP Packet:

 900f1236

 decafbad

 cafebabe

 10000001

 05020002

 abababab

 abababab

 abababab

 abababab

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 13

Encrypted RTP Packet:

 900f1236

 decafbad

 cafebabe

 c2de0001

 4ed9cc4e

 6a712b30

 96c5ca77

 339d4204

 ce0d7739

 6cab6958

 5fbce381

 94a5

A.1.3. RTP Packet with One-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f1238

 decafbad

 cafebabe

 0001e240

 0000b26e

 bede0001

 51000200

 abababab

 abababab

 abababab

 abababab

 920f1238

 decafbad

 cafebabe

 8bb6e12b

 5cff16dd

 c0de0001

 92838c8c

 09e58393

 e1de3a9a

 74734d67

 45671338

 c3acf11d

 a2df8423

 bee0

A.1.4. RTP Packet with Two-Byte Header Extension and CSRC Fields

RTP Packet:

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 14

Encrypted RTP Packet:

 920f1239

 decafbad

 cafebabe

 0001e240

 0000b26e

 10000001

 05020002

 abababab

 abababab

 abababab

 abababab

 920f1239

 decafbad

 cafebabe

 f70e513e

 b90b9b25

 c2de0001

 bbed4848

 faa64466

 5f3d7f34

 125914e9

 f4d0ae92

 3c6f479b

 95a0f7b5

 3133

A.1.5. RTP Packet with Empty One-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f123a

 decafbad

 cafebabe

 0001e240

 0000b26e

 bede0000

 abababab

 abababab

 abababab

 abababab

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 15

 920f123a

 decafbad

 cafebabe

 7130b6ab

 fe2ab0e3

 c0de0000

 e3d9f64b

 25c9e74c

 b4cf8e43

 fb92e378

 1c2c0cea

 b6b3a499

 a14c

A.1.6. RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f123b

 decafbad

 cafebabe

 0001e240

 0000b26e

 10000000

 abababab

 abababab

 abababab

 abababab

 920f123b

 decafbad

 cafebabe

 cbf24c12

 4330e1c8

 c2de0000

 599dd45b

 c9d687b6

 03e8b59d

 771fd38e

 88b170e0

 cd31e125

 eabe

A.2. AES-GCM

The following subsections list the test vectors for using Cryptex with AES-GCM as per .

Common values are organized as follows:

[RFC7714]

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 16

 Rollover Counter: 00000000

 Master Key: 000102030405060708090a0b0c0d0e0f

 Master Salt: a0a1a2a3a4a5a6a7a8a9aaab

 Crypto Suite: AEAD_AES_128_GCM

 Session Key: 077c6143cb221bc355ff23d5f984a16e

 Session Salt: 9af3e95364ebac9c99c5a7c4

A.2.1. RTP Packet with One-Byte Header Extension

RTP Packet:

Encrypted RTP Packet:

 900f1235

 decafbad

 cafebabe

 bede0001

 51000200

 abababab

 abababab

 abababab

 abababab

 900f1235

 decafbad

 cafebabe

 c0de0001

 39972dc9

 572c4d99

 e8fc355d

 e743fb2e

 94f9d8ff

 54e72f41

 93bbc5c7

 4ffab0fa

 9fa0fbeb

A.2.2. RTP Packet with Two-Byte Header Extension

RTP Packet:

 900f1236

 decafbad

 cafebabe

 10000001

 05020002

 abababab

 abababab

 abababab

 abababab

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 17

Encrypted RTP Packet:

 900f1236

 decafbad

 cafebabe

 c2de0001

 bb75a4c5

 45cd1f41

 3bdb7daa

 2b1e3263

 de313667

 c9632490

 81b35a65

 f5cb6c88

 b394235f

A.2.3. RTP Packet with One-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f1238

 decafbad

 cafebabe

 0001e240

 0000b26e

 bede0001

 51000200

 abababab

 abababab

 abababab

 abababab

 920f1238

 decafbad

 cafebabe

 63bbccc4

 a7f695c4

 c0de0001

 8ad7c71f

 ac70a80c

 92866b4c

 6ba98546

 ef913586

 e95ffaaf

 fe956885

 bb0647a8

 bc094ac8

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 18

A.2.4. RTP Packet with Two-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f1239

 decafbad

 cafebabe

 0001e240

 0000b26e

 10000001

 05020002

 abababab

 abababab

 abababab

 abababab

 920f1239

 decafbad

 cafebabe

 3680524f

 8d312b00

 c2de0001

 c78d1200

 38422bc1

 11a7187a

 18246f98

 0c059cc6

 bc9df8b6

 26394eca

 344e4b05

 d80fea83

A.2.5. RTP Packet with Empty One-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f123a

 decafbad

 cafebabe

 0001e240

 0000b26e

 bede0000

 abababab

 abababab

 abababab

 abababab

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 19

 920f123a

 decafbad

 cafebabe

 15b6bb43

 37906fff

 c0de0000

 b7b96453

 7a2b03ab

 7ba5389c

 e9331712

 6b5d974d

 f30c6884

 dcb651c5

 e120c1da

A.2.6. RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

RTP Packet:

Encrypted RTP Packet:

 920f123b

 decafbad

 cafebabe

 0001e240

 0000b26e

 10000000

 abababab

 abababab

 abababab

 abababab

 920f123b

 decafbad

 cafebabe

 dcb38c9e

 48bf95f4

 c2de0000

 61ee432c

 f9203170

 76613258

 d3ce4236

 c06ac429

 681ad084

 13512dc9

 8b5207d8

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 20

Acknowledgements

The authors wish to thank for pointing out many of the issues with the existing

header encryption mechanism, as well as suggestions for this proposal. Thanks also to

, , and for their reviews and suggestions.

Lennart Grahl

Jonathan

Lennox Inaki Castillo Bernard Aboba

Authors' Addresses

Justin Uberti

 justin@uberti.name Email:

Cullen Jennings

Cisco

 fluffy@iii.ca Email:

Sergio Garcia Murillo

Millicast

 sergio.garcia.murillo@cosmosoftware.io Email:

RFC 9335 Completely Encrypting RTP Header Extensions and CSRCs January 2023

Uberti, et al. Standards Track Page 21

mailto:justin@uberti.name
mailto:fluffy@iii.ca
mailto:sergio.garcia.murillo@cosmosoftware.io

	RFC 9335
	Completely Encrypting RTP Header Extensions and Contributing Sources
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Problem Statement
	1.2. Previous Solutions
	1.3. Goals

	2. Terminology
	3. Design
	4. SDP Considerations
	5. RTP Header Processing
	5.1. Sending
	5.2. Receiving

	6. Encryption and Decryption
	6.1. Packet Structure
	6.2. Encryption Procedure
	6.3. Decryption Procedure

	7. Backward Compatibility
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Test Vectors
	A.1. AES-CTR
	A.1.1. RTP Packet with One-Byte Header Extension
	A.1.2. RTP Packet with Two-Byte Header Extension
	A.1.3. RTP Packet with One-Byte Header Extension and CSRC Fields
	A.1.4. RTP Packet with Two-Byte Header Extension and CSRC Fields
	A.1.5. RTP Packet with Empty One-Byte Header Extension and CSRC Fields
	A.1.6. RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

	A.2. AES-GCM
	A.2.1. RTP Packet with One-Byte Header Extension
	A.2.2. RTP Packet with Two-Byte Header Extension
	A.2.3. RTP Packet with One-Byte Header Extension and CSRC Fields
	A.2.4. RTP Packet with Two-Byte Header Extension and CSRC Fields
	A.2.5. RTP Packet with Empty One-Byte Header Extension and CSRC Fields
	A.2.6. RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

	Acknowledgements
	Authors' Addresses

 Completely Encrypting RTP Header Extensions and Contributing Sources

 justin@uberti.name

 Cisco

 fluffy@iii.ca

 Millicast

 sergio.garcia.murillo@cosmosoftware.io

 ART
 AVTCORE
 SRTP

 While the Secure Real-time Transport Protocol (SRTP) provides confidentiality
for the contents of a media packet, a significant amount of metadata is left
unprotected, including RTP header extensions and contributing sources (CSRCs).
However, this data can be moderately sensitive in many applications. While
there have been previous attempts to protect this data, they have had limited
deployment, due to complexity as well as technical limitations.
 This document updates RFC 3711, the SRTP specification, and defines Cryptex as a new mechanism that completely encrypts
header extensions and CSRCs and uses simpler Session Description Protocol (SDP) signaling with the goal of
facilitating deployment.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Problem Statement

 . Previous Solutions

 . Goals

 . Terminology

 . Design

 . SDP Considerations

 . RTP Header Processing

 . Sending

 . Receiving

 . Encryption and Decryption

 . Packet Structure

 . Encryption Procedure

 . Decryption Procedure

 . Backward Compatibility

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Test Vectors

 . AES-CTR

 . RTP Packet with One-Byte Header Extension

 . RTP Packet with Two-Byte Header Extension

 . RTP Packet with One-Byte Header Extension and CSRC Fields

 . RTP Packet with Two-Byte Header Extension and CSRC Fields

 . RTP Packet with Empty One-Byte Header Extension and CSRC Fields

 . RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

 . AES-GCM

 . RTP Packet with One-Byte Header Extension

 . RTP Packet with Two-Byte Header Extension

 . RTP Packet with One-Byte Header Extension and CSRC Fields

 . RTP Packet with Two-Byte Header Extension and CSRC Fields

 . RTP Packet with Empty One-Byte Header Extension and CSRC Fields

 . RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

 Acknowledgements

 Authors' Addresses

 Introduction

 Problem Statement
 The Secure Real-time Transport Protocol (SRTP) mechanism provides message
authentication for the entire RTP packet but only encrypts the RTP payload.
This has not historically been a problem, as much of the information carried
in the header has minimal sensitivity (e.g., RTP timestamp); in addition,
certain fields need to remain as cleartext because they are used for key
scheduling (e.g., RTP synchronization source (SSRC) and sequence number).
 However, as noted in , the security requirements can be different for
information carried in RTP header extensions, including the per-packet sound
levels defined in and , which are specifically noted as
being sensitive in the Security Considerations sections of those RFCs.
 In addition to the contents of the header extensions, there are now enough
header extensions in active use that the header extension identifiers
themselves can provide meaningful information in terms of determining the
identity of the endpoint and/or application. Accordingly, these identifiers
can be considered a fingerprinting issue.
 Finally, the CSRCs included in RTP packets can also be sensitive, potentially
allowing a network eavesdropper to determine who was speaking and when during
an otherwise secure conference call.

 Previous Solutions
 Encryption of Header Extensions in SRTP was proposed in 2013 as a solution to the problem of unprotected
header extension values. However, it has not seen significant adoption and
has a few technical shortcomings.
 First, the mechanism is complicated. Since it allows encryption to be
negotiated on a per-extension basis, a fair amount of signaling logic is
required. And in the SRTP layer, a somewhat complex transform is required
to allow only the selected header extension values to be encrypted. One of
the most popular SRTP implementations had a significant bug in this area
that was not detected for five years.
 Second, the mechanism only protects the header extension values and not their identifiers or
lengths. It also does not protect the CSRCs. As noted above, this leaves
a fair amount of potentially sensitive information exposed.
 Third, the mechanism bloats the header extension space. Because each extension must
be offered in both unencrypted and encrypted forms, twice as many header
extensions must be offered, which will in many cases push implementations
past the 14-extension limit for the use of one-byte extension headers
defined in . Accordingly, in many cases, implementations will need to use
two-byte headers, which are not supported well by some
existing implementations.
 Finally, the header extension bloat combined with the need for backward
compatibility results in additional wire overhead. Because two-byte
extension headers may not be handled well by existing implementations,
one-byte extension identifiers will need to be used for the unencrypted
(backward-compatible) forms, and two-byte for the encrypted forms.
Thus, deployment of encryption for header extensions will
typically result in multiple extra bytes in each RTP packet, compared
to the present situation.

 Goals
 From the previous analysis, the desired properties of a solution are:

 Built on the existing SRTP framework (simple to understand)
 Built on the existing header extension framework (simple to implement)
 Protection of header extension identifiers, lengths, and values
 Protection of CSRCs when present
 Simple signaling
 Simple crypto transform and SRTP interactions
 Backward compatibility with unencrypted endpoints, if desired
 Backward compatibility with existing RTP tooling

 The last point deserves further discussion. While other possible
	solutions that would have encrypted more of the RTP
	header (e.g., the number of CSRCs) were considered, the inability to parse the
	resultant packets with current tools and a generally higher level of
	complexity outweighed the slight improvement in confidentiality in
	these solutions. Hence, a more pragmatic approach was taken to solve
	the problem described in .

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Design
 This specification proposes a mechanism to negotiate encryption of all
RTP header extensions (ids, lengths, and values) as well as CSRC values. It
reuses the existing SRTP framework, is accordingly simple to implement, and
is backward compatible with existing RTP packet parsing code, even when
support for the mechanism has been negotiated.
 Except when explicitly stated otherwise, Cryptex reuses all the framework procedures, transforms, and considerations described in .

 SDP Considerations
 Cryptex support is indicated via a new "a=cryptex" SDP attribute defined in this specification.
 The new "a=cryptex" attribute is a property attribute as defined in ; it therefore takes no value and can be used at the session level or media level.
 The presence of the "a=cryptex" attribute in the SDP (in either an offer or an answer) indicates that
the endpoint is capable of receiving RTP packets encrypted with Cryptex, as defined below.
 Once each peer has verified that the other party supports receiving RTP packets encrypted with Cryptex, senders can unilaterally decide whether or not to use the Cryptex mechanism on a per-packet basis.
 If BUNDLE is in use as per and the "a=cryptex" attribute is present for a media line, it MUST be present for all RTP-based "m=" sections belonging to the same bundle group. This ensures that the encrypted Media Identifier (MID) header extensions can be processed, allowing RTP streams to be associated with the correct "m=" section in each BUNDLE group as specified in . When used with BUNDLE, this attribute is assigned to the TRANSPORT category .
 Both endpoints can change the Cryptex support status by modifying the session as specified in . Generating subsequent SDP offers and answers MUST use the same procedures for including the "a=cryptex" attribute as the ones on the initial offer and answer.

 RTP Header Processing
 A General Mechanism for RTP Header Extensions defines two values for the "defined by profile" field for carrying
one-byte and two-byte header extensions. In order to allow a receiver to determine
if an incoming RTP packet is using the encryption scheme in this specification,
two new values are defined:

 0xC0DE for the encrypted version of the one-byte header extensions (instead of 0xBEDE).
 0xC2DE for the encrypted versions of the two-byte header extensions (instead of 0x100).

 In the case of using two-byte header extensions, the extension identifier with value 256 MUST NOT
be negotiated, as the value of this identifier is meant to be contained in the "appbits" of the
"defined by profile" field, which are not available when using the values above.
 Note that as per , it is not possible to mix one-byte and two-byte headers on the same RTP packet. Mixing one-byte and two-byte headers on the same RTP stream requires negotiation of the "extmap-allow-mixed" SDP attribute as defined in .
 Peers MAY negotiate both Cryptex and the Encryption of Header Extensions mechanism defined in via SDP offer/answer as described in , and if both mechanisms are supported, either one can be used for any given packet. However, if a packet is encrypted with Cryptex, it MUST NOT also use header extension encryption , and vice versa.
 If one of the peers has advertised the ability to receive both Cryptex and
header extensions encrypted as per in the SDP
exchange, it is RECOMMENDED that the other peer use Cryptex
rather than the mechanism in when sending RTP packets
so that all the header extensions and CSRCS are encrypted. However, if there is a
compelling reason to use the mechanism in (e.g., a
need for some header extensions to be sent in the clear so that so they are
processable by RTP middleboxes), the other peer SHOULD use
the mechanism in instead.

 Sending
 When the mechanism defined by this specification has been negotiated,
sending an RTP packet that has any CSRCs or contains any header extensions follows the steps below. This mechanism MUST NOT be
used with header extensions other than the variety described in .
 If the RTP packet contains one-byte headers, the 16-bit RTP header
 extension tag MUST be set to 0xC0DE to indicate that the encryption
 has been applied and the one-byte framing is being used. If the RTP
 packet contains two-byte headers, the header extension tag
 MUST be set to 0xC2DE to indicate encryption has been applied and the
 two-byte framing is being used.
	

 If the packet contains CSRCs but no header extensions, an empty extension block
consisting of the 0xC0DE tag and a 16-bit length field set to zero (explicitly
permitted by) MUST be appended, and the X bit MUST be set to 1 to
indicate an extension block is present. This is necessary to provide the receiver
an indication that the CSRCs in the packet are encrypted.
 The RTP packet MUST then be encrypted as described in ("Encryption Procedure").

 Receiving
 When receiving an RTP packet that contains header extensions, the
"defined by profile" field MUST be checked to ensure the payload is
formatted according to this specification. If the field does not match
one of the values defined above, the implementation MUST instead
handle it according to the specification that defines that value.
 Alternatively, if the implementation considers the use of this specification mandatory and the "defined by profile" field does not match one of the values defined above, it MUST stop the processing of the RTP packet and report an error for the RTP stream.
 If the RTP packet passes this check, it is then decrypted as described in
 ("Decryption Procedure") and passed to the next layer to process
the packet and its extensions. In the event that a zero-length extension
block was added as indicated above, it can be left as is and will be
processed normally.

 Encryption and Decryption

 Packet Structure
 When this mechanism is active, the SRTP packet is protected as follows:

 A Protected SRTP Packet

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+<+
 |V=2|P|X| CC |M| PT | sequence number | |
 +-+ |
 | timestamp | |
 +-+ |
 | synchronization source (SSRC) identifier | |
+>+=+ |
| | contributing source (CSRC) identifiers | |
| | | |
+>+-+ |
X | 0xC0 or 0xC2 | 0xDE | length | |
+>+-+ |
| | RFC 8285 header extensions | |
| +-+ |
	payload ...			
	+-------------------------------+			
		RTP padding	RTP pad count	
+>+-+<+				
~ SRTP Master Key Identifier (MKI) (OPTIONAL) ~				
+-+				
: authentication tag (RECOMMENDED) :				
+-+				
+- Encrypted Portion Authenticated Portion ---+

 Note that, as required by , the 4 bytes at the start of the extension block are not encrypted.
 Specifically, the Encrypted Portion MUST include any CSRC identifiers, any
RTP header extension (except for the first 4 bytes), and the RTP payload.

 Encryption Procedure
 The encryption procedure is identical to that of except for the
	Encrypted Portion of the SRTP packet. The plaintext input to the cipher is as follows:

Plaintext = CSRC identifiers (if used) || header extension data ||
 RTP payload || RTP padding (if used) || RTP pad count (if used)

 Here "header extension data" refers to the content of the RTP extension field,
excluding the first four bytes (the extension header). The first 4 * CSRC count (CC) bytes of the ciphertext are placed in the CSRC field of the RTP header.
The remainder of the ciphertext is the RTP payload of the encrypted packet.
 To minimize changes to surrounding code, the encryption mechanism can choose
to replace a "defined by profile" field from with its counterpart
defined in ("RTP Header Processing") and encrypt at the same time.
 For Authenticated Encryption with Associated Data (AEAD) ciphers (e.g., AES-GCM), the 12-byte fixed header and the four-byte header
extension header (the "defined by profile" field and the length) are considered
additional authenticated data (AAD), even though they are non-contiguous in the packet if CSRCs are present.

Associated Data: fixed header || extension header (if X=1)

 Here "fixed header" refers to the 12-byte fixed portion of the RTP header, and
"extension header" refers to the four-byte extension header ("defined
by profile" and extension length).
 Implementations can rearrange a packet so that the AAD and plaintext are
contiguous by swapping the order of the extension header and the CSRC
identifiers, resulting in an intermediate representation of the form shown in
 . After encryption, the CSRCs (now encrypted) and
extension header would need to be swapped back to their original positions. A
similar operation can be done when decrypting to create contiguous ciphertext
and AAD inputs.

 An RTP Packet Transformed to Make Cryptex Cipher Inputs Contiguous

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+<+
 |V=2|P|X| CC |M| PT | sequence number | |
 +-+ |
 | timestamp | |
 +-+ |
 | synchronization source (SSRC) identifier | |
 +-+ |
 | 0xC0 or 0xC2 | 0xDE | length | |
+>+=+<+
| | contributing source (CSRC) identifiers | |
| | | |
| +-+ |
| | RFC 8285 header extensions | |
| +-+ |
	payload ...			
	+-------------------------------+			
		RTP padding	RTP pad count	
+>+-+				
+- Plaintext Input AAD Input ---+

 Note that this intermediate representation is only displayed as reference for implementations and is not meant to be sent on the wire.

 Decryption Procedure
 The decryption procedure is identical to that of except
for the Encrypted Portion of the SRTP packet, which is as shown in the section above.
 To minimize changes to surrounding code, the decryption mechanism can choose
to replace the "defined by profile" field with its no-encryption counterpart
from and decrypt at the same time.

 Backward Compatibility
 This specification attempts to encrypt as much as possible without interfering
with backward compatibility for systems that expect a certain structure from
an RTPv2 packet, including systems that perform demultiplexing based on packet
headers. Accordingly, the first two bytes of the RTP packet are not encrypted.
 This specification also attempts to reuse the key scheduling from SRTP, which
depends on the RTP packet sequence number and SSRC identifier. Accordingly,
these values are also not encrypted.

 Security Considerations
 All security considerations in are applicable to this specification; the exception is Section , because confidentiality of the RTP Header is the purpose of this specification.
 The risks of using weak or NULL authentication with SRTP, described in , apply to encrypted header extensions as well.
 This specification extends SRTP by expanding the Encrypted Portion of the RTP packet,
as shown in ("Packet Structure"). It does not change how SRTP authentication
works in any way. Given that more of the packet is being encrypted than before,
this is necessarily an improvement.
 The RTP fields that are left unencrypted (see rationale above) are as follows:

 RTP version
 padding bit
 extension bit
 number of CSRCs
 marker bit
 payload type
 sequence number
 timestamp
 SSRC identifier
 number of header extensions

 These values contain a fixed set (i.e., one that won't be changed by
extensions) of information that, at present, is observed to have low
sensitivity. In the event any of these values need to be encrypted, SRTP
is likely the wrong protocol to use and a fully encapsulating protocol
such as DTLS is preferred (with its attendant per-packet overhead).

 IANA Considerations
 This document updates the "attribute-name (formerly "att-field")" subregistry of the "Session Description Protocol (SDP) Parameters" registry (see). Specifically, it adds the SDP "a=cryptex" attribute for use at both the media level and the session level.

 Contact name:
 IETF AVT Working Group or IESG if the AVT Working Group is closed
 Contact email address:
 avt@ietf.org
 Attribute name:
 cryptex
 Attribute syntax:
 This attribute takes no values.
 Attribute semantics:
 N/A
 Attribute value:
 N/A
 Usage level:
 session, media
 Charset dependent:
 No
 Purpose:
 The presence of this attribute in the SDP indicates that the
	 endpoint is capable of receiving RTP packets encrypted with Cryptex
	 as described in this document.
 O/A procedures:
 SDP O/A procedures are described in Section of this
	 document.
 Mux Category:
 TRANSPORT

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 An Offer/Answer Model with Session Description Protocol (SDP)

 This document defines a mechanism by which two entities can make use of the Session Description Protocol (SDP) to arrive at a common view of a multimedia session between them. In the model, one participant offers the other a description of the desired session from their perspective, and the other participant answers with the desired session from their perspective. This offer/answer model is most useful in unicast sessions where information from both participants is needed for the complete view of the session. The offer/answer model is used by protocols like the Session Initiation Protocol (SIP). [STANDARDS-TRACK]

 RTP: A Transport Protocol for Real-Time Applications

 This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of- service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers. Most of the text in this memorandum is identical to RFC 1889 which it obsoletes. There are no changes in the packet formats on the wire, only changes to the rules and algorithms governing how the protocol is used. The biggest change is an enhancement to the scalable timer algorithm for calculating when to send RTCP packets in order to minimize transmission in excess of the intended rate when many participants join a session simultaneously. [STANDARDS-TRACK]

 The Secure Real-time Transport Protocol (SRTP)

 This document describes the Secure Real-time Transport Protocol (SRTP), a profile of the Real-time Transport Protocol (RTP), which can provide confidentiality, message authentication, and replay protection to the RTP traffic and to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP). [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 A General Mechanism for RTP Header Extensions

 This document provides a general mechanism to use the header extension feature of RTP (the Real-time Transport Protocol). It provides the option to use a small number of small extensions in each RTP packet, where the universe of possible extensions is large and registration is decentralized. The actual extensions in use in a session are signaled in the setup information for that session. This document obsoletes RFC 5285.

 A Framework for Session Description Protocol (SDP) Attributes When Multiplexing

 The purpose of this specification is to provide a framework for analyzing the multiplexing characteristics of Session Description Protocol (SDP) attributes when SDP is used to negotiate the usage of a single 5-tuple for sending and receiving media associated with multiple media descriptions.
 This specification also categorizes the existing SDP attributes based on the framework described herein.

 SDP: Session Description Protocol

 This memo defines the Session Description Protocol (SDP). SDP is intended for describing multimedia sessions for the purposes of session announcement, session invitation, and other forms of multimedia session initiation. This document obsoletes RFC 4566.

 Negotiating Media Multiplexing Using the Session Description Protocol (SDP)

 This specification defines a new Session Description Protocol (SDP) Grouping Framework extension called 'BUNDLE'. The extension can be used with the SDP offer/answer mechanism to negotiate the usage of a single transport (5-tuple) for sending and receiving media described by multiple SDP media descriptions ("m=" sections). Such transport is referred to as a "BUNDLE transport", and the media is referred to as "bundled media". The "m=" sections that use the BUNDLE transport form a BUNDLE group.
 This specification defines a new RTP Control Protocol (RTCP) Source Description (SDES) item and a new RTP header extension.
 This specification updates RFCs 3264, 5888, and 7941.
 This specification obsoletes RFC 8843.

 Informative References

 A Real-time Transport Protocol (RTP) Header Extension for Client-to-Mixer Audio Level Indication

 This document defines a mechanism by which packets of Real-time Transport Protocol (RTP) audio streams can indicate, in an RTP header extension, the audio level of the audio sample carried in the RTP packet. In large conferences, this can reduce the load on an audio mixer or other middlebox that wants to forward only a few of the loudest audio streams, without requiring it to decode and measure every stream that is received. [STANDARDS-TRACK]

 A Real-time Transport Protocol (RTP) Header Extension for Mixer-to-Client Audio Level Indication

 This document describes a mechanism for RTP-level mixers in audio conferences to deliver information about the audio level of individual participants. Such audio level indicators are transported in the same RTP packets as the audio data they pertain to. [STANDARDS-TRACK]

 Encryption of Header Extensions in the Secure Real-time Transport Protocol (SRTP)

 The Secure Real-time Transport Protocol (SRTP) provides authentication, but not encryption, of the headers of Real-time Transport Protocol (RTP) packets. However, RTP header extensions may carry sensitive information for which participants in multimedia sessions want confidentiality. This document provides a mechanism, extending the mechanisms of SRTP, to selectively encrypt RTP header extensions in SRTP.
 This document updates RFC 3711, the Secure Real-time Transport Protocol specification, to require that all future SRTP encryption transforms specify how RTP header extensions are to be encrypted.

 AES-GCM Authenticated Encryption in the Secure Real-time Transport Protocol (SRTP)

 This document defines how the AES-GCM Authenticated Encryption with Associated Data family of algorithms can be used to provide confidentiality and data authentication in the Secure Real-time Transport Protocol (SRTP).

 Test Vectors
 All values are in hexadecimal and represented in network order (big endian).

 AES-CTR
 The following subsections list the test vectors for using Cryptex with AES-CTR as per .
 Common values are organized as follows:

Rollover Counter: 00000000
Master Key: e1f97a0d3e018be0d64fa32c06de4139
Master Salt: 0ec675ad498afeebb6960b3aabe6
Crypto Suite: AES_CM_128_HMAC_SHA1_80
Session Key: c61e7a93744f39ee10734afe3ff7a087
Session Salt: 30cbbc08863d8c85d49db34a9ae1
Authentication Key: cebe321f6ff7716b6fd4ab49af256a156d38baa4

 RTP Packet with One-Byte Header Extension
 RTP Packet:

 900f1235
 decafbad
 cafebabe
 bede0001
 51000200
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 900f1235
 decafbad
 cafebabe
 c0de0001
 eb923652
 51c3e036
 f8de27e9
 c27ee3e0
 b4651d9f
 bc4218a7
 0244522f
 34a5

 RTP Packet with Two-Byte Header Extension
 RTP Packet:

 900f1236
 decafbad
 cafebabe
 10000001
 05020002
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 900f1236
 decafbad
 cafebabe
 c2de0001
 4ed9cc4e
 6a712b30
 96c5ca77
 339d4204
 ce0d7739
 6cab6958
 5fbce381
 94a5

 RTP Packet with One-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f1238
 decafbad
 cafebabe
 0001e240
 0000b26e
 bede0001
 51000200
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f1238
 decafbad
 cafebabe
 8bb6e12b
 5cff16dd
 c0de0001
 92838c8c
 09e58393
 e1de3a9a
 74734d67
 45671338
 c3acf11d
 a2df8423
 bee0

 RTP Packet with Two-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f1239
 decafbad
 cafebabe
 0001e240
 0000b26e
 10000001
 05020002
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f1239
 decafbad
 cafebabe
 f70e513e
 b90b9b25
 c2de0001
 bbed4848
 faa64466
 5f3d7f34
 125914e9
 f4d0ae92
 3c6f479b
 95a0f7b5
 3133

 RTP Packet with Empty One-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f123a
 decafbad
 cafebabe
 0001e240
 0000b26e
 bede0000
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f123a
 decafbad
 cafebabe
 7130b6ab
 fe2ab0e3
 c0de0000
 e3d9f64b
 25c9e74c
 b4cf8e43
 fb92e378
 1c2c0cea
 b6b3a499
 a14c

 RTP Packet with Empty Two-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f123b
 decafbad
 cafebabe
 0001e240
 0000b26e
 10000000
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f123b
 decafbad
 cafebabe
 cbf24c12
 4330e1c8
 c2de0000
 599dd45b
 c9d687b6
 03e8b59d
 771fd38e
 88b170e0
 cd31e125
 eabe

 AES-GCM
 The following subsections list the test vectors for using Cryptex with AES-GCM as per .
 Common values are organized as follows:

 Rollover Counter: 00000000
 Master Key: 000102030405060708090a0b0c0d0e0f
 Master Salt: a0a1a2a3a4a5a6a7a8a9aaab
 Crypto Suite: AEAD_AES_128_GCM
 Session Key: 077c6143cb221bc355ff23d5f984a16e
 Session Salt: 9af3e95364ebac9c99c5a7c4

 RTP Packet with One-Byte Header Extension
 RTP Packet:

 900f1235
 decafbad
 cafebabe
 bede0001
 51000200
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 900f1235
 decafbad
 cafebabe
 c0de0001
 39972dc9
 572c4d99
 e8fc355d
 e743fb2e
 94f9d8ff
 54e72f41
 93bbc5c7
 4ffab0fa
 9fa0fbeb

 RTP Packet with Two-Byte Header Extension
 RTP Packet:

 900f1236
 decafbad
 cafebabe
 10000001
 05020002
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 900f1236
 decafbad
 cafebabe
 c2de0001
 bb75a4c5
 45cd1f41
 3bdb7daa
 2b1e3263
 de313667
 c9632490
 81b35a65
 f5cb6c88
 b394235f

 RTP Packet with One-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f1238
 decafbad
 cafebabe
 0001e240
 0000b26e
 bede0001
 51000200
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f1238
 decafbad
 cafebabe
 63bbccc4
 a7f695c4
 c0de0001
 8ad7c71f
 ac70a80c
 92866b4c
 6ba98546
 ef913586
 e95ffaaf
 fe956885
 bb0647a8
 bc094ac8

 RTP Packet with Two-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f1239
 decafbad
 cafebabe
 0001e240
 0000b26e
 10000001
 05020002
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f1239
 decafbad
 cafebabe
 3680524f
 8d312b00
 c2de0001
 c78d1200
 38422bc1
 11a7187a
 18246f98
 0c059cc6
 bc9df8b6
 26394eca
 344e4b05
 d80fea83

 RTP Packet with Empty One-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f123a
 decafbad
 cafebabe
 0001e240
 0000b26e
 bede0000
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f123a
 decafbad
 cafebabe
 15b6bb43
 37906fff
 c0de0000
 b7b96453
 7a2b03ab
 7ba5389c
 e9331712
 6b5d974d
 f30c6884
 dcb651c5
 e120c1da

 RTP Packet with Empty Two-Byte Header Extension and CSRC Fields
 RTP Packet:

 920f123b
 decafbad
 cafebabe
 0001e240
 0000b26e
 10000000
 abababab
 abababab
 abababab
 abababab

 Encrypted RTP Packet:

 920f123b
 decafbad
 cafebabe
 dcb38c9e
 48bf95f4
 c2de0000
 61ee432c
 f9203170
 76613258
 d3ce4236
 c06ac429
 681ad084
 13512dc9
 8b5207d8

 Acknowledgements
 The authors wish to thank for
 pointing out many of the issues with the existing header encryption
 mechanism, as well as suggestions for this proposal. Thanks also to
 , , and for their reviews
 and suggestions.

 Authors' Addresses

 justin@uberti.name

 Cisco

 fluffy@iii.ca

 Millicast

 sergio.garcia.murillo@cosmosoftware.io

