
RFC 9325

Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer

Security (DTLS)

Abstract

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to

protect data exchanged over a wide range of application protocols and can also form the basis

for secure transport protocols. Over the years, the industry has witnessed several serious attacks

on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of

operation. This document provides the latest recommendations for ensuring the security of

deployed services that use TLS and DTLS. These recommendations are applicable to the majority

of use cases.

RFC 7525, an earlier version of the TLS recommendations, was published when the industry was

transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely

available. This document updates the guidance given the new environment and obsoletes RFC

7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.

Stream:

RFC:

BCP:

Obsoletes:

Updates:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9325

195

7525

5288, 6066

Best Current Practice

November 2022

2070-1721

 Y. Sheffer

Intuit

P. Saint-Andre

Independent

T. Fossati

ARM Limited

Status of This Memo

This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is

available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9325

Sheffer, et al. Best Current Practice Page 1

https://www.rfc-editor.org/rfc/rfc9325
https://www.rfc-editor.org/rfc/rfc7525
https://www.rfc-editor.org/rfc/rfc5288
https://www.rfc-editor.org/rfc/rfc6066
https://www.rfc-editor.org/info/rfc9325

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. General Recommendations

3.1. Protocol Versions

3.1.1. SSL/TLS Protocol Versions

3.1.2. DTLS Protocol Versions

3.1.3. Fallback to Lower Versions

3.2. Strict TLS

3.3. Compression

3.3.1. Certificate Compression

3.4. TLS Session Resumption

3.5. Renegotiation in TLS 1.2

3.6. Post-Handshake Authentication

3.7. Server Name Indication (SNI)

3.8. Application-Layer Protocol Negotiation (ALPN)

3.9. Multi-Server Deployment

3.10. Zero Round-Trip Time (0-RTT) Data in TLS 1.3

4. Recommendations: Cipher Suites

4.1. General Guidelines

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 2

https://trustee.ietf.org/license-info

4.2. Cipher Suites for TLS 1.2

4.2.1. Implementation Details

4.3. Cipher Suites for TLS 1.3

4.4. Limits on Key Usage

4.5. Public Key Length

4.6. Truncated HMAC

5. Applicability Statement

5.1. Security Services

5.2. Opportunistic Security

6. IANA Considerations

7. Security Considerations

7.1. Host Name Validation

7.2. AES-GCM

7.2.1. Nonce Reuse in TLS 1.2

7.3. Forward Secrecy

7.4. Diffie-Hellman Exponent Reuse

7.5. Certificate Revocation

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Differences from RFC 7525

Acknowledgments

Authors' Addresses

1. Introduction

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to

protect data exchanged over a wide variety of application protocols, including HTTP

, IMAP , Post Office Protocol (POP) , SIP , SMTP ,

and the Extensible Messaging and Presence Protocol (XMPP) . Such protocols use both

the TLS or DTLS handshake protocol and the TLS or DTLS record layer. Although the TLS

[RFC9112]

[RFC9113] [RFC9051] [STD53] [RFC3261] [RFC5321]

[RFC6120]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 3

handshake protocol can also be used with different record layers to define secure transport

protocols (the most prominent example is QUIC), such transport protocols are not

directly in scope for this document; nevertheless, many of the recommendations here might

apply insofar as such protocols use the TLS handshake protocol.

Over the years leading to 2015, the industry had witnessed serious attacks on TLS and DTLS,

including attacks on the most commonly used cipher suites and their modes of operation. For

instance, both the AES-CBC and RC4 encryption algorithms, which together

were once the most widely deployed ciphers, were attacked in the context of TLS. Detailed

information about the attacks known prior to 2015 is provided in a companion document

 to the previous version of the TLS recommendations , which will help the

reader understand the rationale behind the recommendations provided here. That document has

not been updated in concert with this one; instead, newer attacks are described in this document,

as are mitigations for those attacks.

The TLS community reacted to the attacks described in in several ways:

Detailed guidance was published on the use of TLS 1.2 and DTLS 1.2

along with earlier protocol versions. This guidance is included in the original and

mostly retained in this revised version; note that this guidance was mostly adopted by the

industry since the publication of RFC 7525 in 2015.

Versions of TLS earlier than 1.2 were deprecated .

Version 1.3 of TLS was released, followed by version 1.3 of DTLS ; these

versions largely mitigate or resolve the described attacks.

Those who implement and deploy TLS and TLS-based protocols need guidance on how they can

be used securely. This document provides guidance for deployed services as well as for software

implementations, assuming the implementer expects their code to be deployed in the

environments defined in Section 5. Concerning deployment, this document targets a wide

audience, namely all deployers who wish to add authentication (be it one-way only or mutual),

confidentiality, and data integrity protection to their communications.

The recommendations herein take into consideration the security of various mechanisms, their

technical maturity and interoperability, and their prevalence in implementations at the time of

writing. Unless it is explicitly called out that a recommendation applies to TLS alone or to DTLS

alone, each recommendation applies to both TLS and DTLS.

This document attempts to minimize new guidance to TLS 1.2 implementations, and the overall

approach is to encourage systems to move to TLS 1.3. However, this is not always practical.

Newly discovered attacks, as well as ecosystem changes, necessitated some new requirements

that apply to TLS 1.2 environments. Those are summarized in Appendix A.

Naturally, future attacks are likely, and this document cannot address them. Those who

implement and deploy TLS/DTLS and protocols based on TLS/DTLS are strongly advised to pay

attention to future developments. In particular, although it is known that the creation of

quantum computers will have a significant impact on the security of cryptographic primitives

[RFC9000]

[RFC3602] [RFC7465]

[RFC7457] [RFC7525]

[RFC7457]

• [RFC5246] [RFC6347]

[RFC7525]

• [RFC8996]

• [RFC8446] [RFC9147]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 4

and the technologies that use them, currently post-quantum cryptography is a work in progress

and it is too early to make recommendations; once the relevant specifications are standardized

in the IETF or elsewhere, this document should be updated to reflect best practices at that time.

As noted, the TLS 1.3 specification resolves many of the vulnerabilities listed in this document. A

system that deploys TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below. Therefore,

this document replaces , with an explicit goal to encourage migration of most uses of

TLS 1.2 to TLS 1.3.

These are minimum recommendations for the use of TLS in the vast majority of implementation

and deployment scenarios, with the exception of unauthenticated TLS (see Section 5). Other

specifications that reference this document can have stricter requirements related to one or

more aspects of the protocol, based on their particular circumstances (e.g., for use with a specific

application protocol); when that is the case, implementers are advised to adhere to those stricter

requirements. Furthermore, this document provides a floor, not a ceiling: where feasible,

administrators of services are encouraged to go beyond the minimum support available in

implementations to provide the strongest security possible. For example, based on knowledge

about the deployed base for an existing application protocol and a cost-benefit analysis regarding

security strength vs. interoperability, a given service provider might decide to disable TLS 1.2

entirely and offer only TLS 1.3.

Community knowledge about the strength of various algorithms and feasible attacks can change

quickly, and experience shows that a Best Current Practice (BCP) document about security is a

point-in-time statement. Readers are advised to seek out any errata or updates that apply to this

document.

This document updates in view of the attack. See Section 7.2.1 for the

details.

This document updates in view of the attack. See Section 3.7 for the details.

[RFC7525]

[RFC5288] [Boeck2016]

[RFC6066] [ALPACA]

2. Terminology

A number of security-related terms in this document are used in the sense defined in ,

including "attack", "authentication", "certificate", "cipher", "compromise", "confidentiality",

"credential", "data integrity", "encryption", "forward secrecy", "key", "key length", "self-signed

certificate", "strength", and "strong".

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

[RFC4949]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. General Recommendations

This section provides general recommendations on the secure use of TLS. Recommendations

related to cipher suites are discussed in the following section.

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 5

3.1. Protocol Versions

3.1.1. SSL/TLS Protocol Versions

It is important both to stop using old, less secure versions of SSL/TLS and to start using modern,

more secure versions; therefore, the following are the recommendations concerning TLS/SSL

protocol versions:

Implementations negotiate SSL version 2.

Rationale: Today, SSLv2 is considered insecure .

Implementations negotiate SSL version 3.

Rationale: SSLv3 was an improvement over SSLv2 and plugged some significant

security holes but did not support strong cipher suites. SSLv3 does not support TLS

extensions, some of which (e.g., renegotiation_info) are security critical. In

addition, with the emergence of the Padding Oracle On Downgraded Legacy Encryption

(POODLE) attack , SSLv3 is now widely recognized as fundamentally insecure. See

 for further details.

Implementations negotiate TLS version 1.0 .

Rationale: TLS 1.0 (published in 1999) does not support many modern, strong cipher suites.

In addition, TLS 1.0 lacks a per-record Initialization Vector (IV) for cipher suites based on

cipher block chaining (CBC) and does not warn against common padding errors. This and

other recommendations in this section are in line with .

Implementations negotiate TLS version 1.1 .

Rationale: TLS 1.1 (published in 2006) is a security improvement over TLS 1.0 but still does

not support certain stronger cipher suites that were introduced with the standardization of

TLS 1.2 in 2008, including the cipher suites recommended for TLS 1.2 by this document (see

Section 4.2 below).

Implementations support TLS 1.2 .

Rationale: TLS 1.2 is implemented and deployed more widely than TLS 1.3 at this time, and

when the recommendations in this document are followed to mitigate known attacks, the

use of TLS 1.2 is as safe as the use of TLS 1.3. In most application protocols that reuse TLS

and DTLS, there is no immediate need to migrate solely to TLS 1.3. Indeed, because many

application clients are dependent on TLS libraries or operating systems that do not yet

support TLS 1.3, proactively deprecating TLS 1.2 would introduce significant interoperability

issues, thus harming security more than helping it. Nevertheless, it is expected that a future

version of this BCP will deprecate the use of TLS 1.2 when it is appropriate to do so.

Implementations support TLS 1.3 and, if implemented, prefer to

negotiate TLS 1.3 over earlier versions of TLS.

Rationale: TLS 1.3 is a major overhaul to the protocol and resolves many of the security

issues with TLS 1.2. To the extent that an implementation supports TLS 1.2 (even if it defaults

to TLS 1.3), it follow the recommendations regarding TLS 1.2 specified in this

document.

• MUST NOT

[RFC6176]

• MUST NOT

[RFC6101]

[RFC5746]

[POODLE]

[RFC7568]

• MUST NOT [RFC2246]

[RFC8996]

• MUST NOT [RFC4346]

• MUST [RFC5246]

• SHOULD [RFC8446] MUST

MUST

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 6

New transport protocols that integrate the TLS/DTLS handshake protocol and/or record layer

 use only TLS/DTLS 1.3 (for instance, QUIC took this approach). New

application protocols that employ TLS/DTLS for channel or session encryption

integrate with both TLS/DTLS versions 1.2 and 1.3; nevertheless, in rare cases where broad

interoperability is not a concern, application protocol designers choose to forego TLS

1.2.

Rationale: Secure deployment of TLS 1.3 is significantly easier and less error prone than

secure deployment of TLS 1.2. When designing a new secure transport protocol such as QUIC,

there is no reason to support TLS 1.2. By contrast, new application protocols that reuse TLS

need to support both TLS 1.3 and TLS 1.2 in order to take advantage of underlying library or

operating system support for both versions.

This BCP applies to TLS 1.3, TLS 1.2, and earlier versions. It is not safe for readers to assume that

the recommendations in this BCP apply to any future version of TLS.

•

MUST [RFC9001]

MUST

MAY

3.1.2. DTLS Protocol Versions

DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS 1.1 was published. The

following are the recommendations with respect to DTLS:

Implementations negotiate DTLS version 1.0 .

Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).

Implementations support DTLS 1.2 .

Version 1.2 of DTLS correlates to version 1.2 of TLS (see above). (There is no version 1.1 of

DTLS.)

Implementations support DTLS 1.3 and, if implemented, prefer to

negotiate DTLS version 1.3 over earlier versions of DTLS.

Version 1.3 of DTLS correlates to version 1.3 of TLS (see above).

• MUST NOT [RFC4347]

• MUST [RFC6347]

• SHOULD [RFC9147] MUST

3.1.3. Fallback to Lower Versions

TLS/DTLS 1.2 clients fall back to earlier TLS versions, since those versions have been

deprecated . As a result, the downgrade-protection Signaling Cipher Suite Value (SCSV)

mechanism is no longer needed for clients. In addition, TLS 1.3 implements a new

version-negotiation mechanism.

MUST NOT

[RFC8996]

[RFC7507]

3.2. Strict TLS

The following recommendations are provided to help prevent "SSL Stripping" and STARTTLS

command injection (attacks that are summarized in):

Many existing application protocols were designed before the use of TLS became common.

These protocols typically support TLS in one of two ways: either via a separate port for TLS-

only communication (e.g., port 443 for HTTPS) or via a method for dynamically upgrading a

channel from unencrypted to TLS protected (e.g., STARTTLS, which is used in protocols such

as IMAP and XMPP). Regardless of the mechanism for protecting the communication channel

[RFC7457]

•

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 7

(TLS-only port or dynamic upgrade), what matters is the end state of the channel. When a

protocol defines both a dynamic upgrade method and a separate TLS-only method, then the

separate TLS-only method be supported by implementations and be configured

by administrators to be used in preference to the dynamic upgrade method. When a protocol

supports only a dynamic upgrade method, implementations provide a way for

administrators to set a strict local policy that forbids use of plaintext in the absence of a

negotiated TLS channel, and administrators use this policy.

HTTP client and server implementations intended for use in the World Wide Web (see

Section 5) support the HTTP Strict Transport Security (HSTS) header field so

that web servers can advertise that they are willing to accept TLS-only clients. Web servers

 use HSTS to indicate that they are willing to accept TLS-only clients, unless they are

deployed in such a way that using HSTS would in fact weaken overall security (e.g., it can be

problematic to use HSTS with self-signed certificates, as described in

). Similar technologies exist for non-HTTP application protocols, such as Mail

Transfer Agent Strict Transport Security (MTA-STS) for mail transfer agents and

methods based on DNS-Based Authentication of Named Entities (DANE) for SMTP

 and XMPP .

Rationale: Combining unprotected and TLS-protected communication opens the way to SSL

Stripping and similar attacks, since an initial part of the communication is not integrity protected

and therefore can be manipulated by an attacker whose goal is to keep the communication in the

clear.

MUST MUST

MUST

MUST

•

MUST [RFC6797]

SHOULD

Section 11.3 of

[RFC6797]

[RFC8461]

[RFC6698]

[RFC7672] [RFC7712]

3.3. Compression

Rationale: TLS compression has been subject to security attacks such as the Compression Ratio

Info-leak Made Easy (CRIME) attack.

Implementers should note that compression at higher protocol levels can allow an active

attacker to extract cleartext information from the connection. The Browser Reconnaissance and

Exfiltration via Adaptive Compression of Hypertext (BREACH) attack is one such case. These

issues can only be mitigated outside of TLS and are thus outside the scope of this document. See

 for further details.

In order to help prevent compression-related attacks (summarized in)

when using TLS 1.2, implementations and deployments support TLS-level

compression (); the only exception is when the application protocol in

question has been proven not to be open to such attacks. However, even in this case, extreme

caution is warranted because of the potential for future attacks related to TLS compression. More

specifically, the HTTP protocol is known to be vulnerable to compression-related attacks. (This

recommendation applies to TLS 1.2 only, because compression has been removed from TLS 1.3.)

Section 2.6 of [RFC7457]

SHOULD NOT

Section 6.2.2 of [RFC5246]

Section 2.6 of [RFC7457]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 8

https://www.rfc-editor.org/rfc/rfc6797#section-11.3
https://www.rfc-editor.org/rfc/rfc7457#section-2.6
https://www.rfc-editor.org/rfc/rfc5246#section-6.2.2
https://www.rfc-editor.org/rfc/rfc7457#section-2.6

3.3.1. Certificate Compression

Certificate chains often take up most of the bytes transmitted during the handshake. In order to

manage their size, some or all of the following methods can be employed (see also

 for further suggestions):

Limit the number of names or extensions.

Use keys with small public key representations, like the Elliptic Curve Digital Signature

Algorithm (ECDSA).

Use certificate compression.

To achieve the latter, TLS 1.3 defines the compress_certificate extension in . See also

 for security and privacy considerations associated with its use. For the

avoidance of doubt, CRIME-style attacks on TLS compression do not apply to certificate

compression.

Due to the strong likelihood of middlebox interference, compression in the style of has

not been made available in TLS 1.2. In theory, the cached_info extension defined in

could be used, but it is not supported widely enough to be considered a practical alternative.

Section 4 of

[RFC9191]

•

•

•

[RFC8879]

Section 5 of [RFC8879]

[RFC8879]

[RFC7924]

3.4. TLS Session Resumption

Session resumption drastically reduces the number of full TLS handshakes and thus is an

essential performance feature for most deployments.

Stateless session resumption with session tickets is a popular strategy. For TLS 1.2, it is specified

in . For TLS 1.3, a more secure mechanism based on the use of a pre-shared key (PSK) is

described in . See for a quantitative study of the risks

induced by TLS cryptographic "shortcuts", including session resumption.

When it is used, the resumption information be authenticated and encrypted to prevent

modification or eavesdropping by an attacker. Further recommendations apply to session tickets:

A strong cipher be used when encrypting the ticket (at least as strong as the main TLS

cipher suite).

Ticket-encryption keys be changed regularly, e.g., once every week, so as not to negate

the benefits of forward secrecy (see Section 7.3 for details on forward secrecy). Old ticket-

encryption keys be destroyed at the end of the validity period.

For similar reasons, session ticket validity be limited to a reasonable duration (e.g.,

half as long as ticket-encryption key validity).

TLS 1.2 does not roll the session key forward within a single session. Thus, to prevent an

attack where the server's ticket-encryption key is stolen and used to decrypt the entire

content of a session (negating the concept of forward secrecy), a TLS 1.2 server

resume sessions that are too old, e.g., sessions that have been open longer than two ticket-

encryption key rotation periods.

[RFC5077]

Section 4.6.1 of [RFC8446] [Springall16]

MUST

• MUST

• MUST

MUST

• MUST

•

SHOULD NOT

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 9

https://www.rfc-editor.org/rfc/rfc9191#section-4
https://www.rfc-editor.org/rfc/rfc8879#section-5
https://www.rfc-editor.org/rfc/rfc8446#section-4.6.1

Rationale: Session resumption is another kind of TLS handshake and therefore must be as secure

as the initial handshake. This document (Section 4) recommends the use of cipher suites that

provide forward secrecy, i.e., that prevent an attacker who gains momentary access to the TLS

endpoint (either client or server) and its secrets from reading either past or future

communication. The tickets must be managed so as not to negate this security property.

TLS 1.3 provides the powerful option of forward secrecy even within a long-lived connection that

is periodically resumed. recommends that clients send a

"key_share" when initiating session resumption. In order to gain forward secrecy, this document

recommends that server implementations select the "psk_dhe_ke" PSK key exchange

mode and respond with a "key_share" to complete an Ephemeral Elliptic Curve Diffie-Hellman

(ECDHE) exchange on each session resumption. As a more performant alternative, server

implementations refrain from responding with a "key_share" until a certain amount of time

(e.g., measured in hours) has passed since the last ECDHE exchange; this implies that the

"key_share" operation would not occur for the presumed majority of session resumption

requests (which would occur within a few hours) while still ensuring forward secrecy for longer-

lived sessions.

TLS session resumption introduces potential privacy issues where the server is able to track the

client, in some cases indefinitely. See for more details.

Section 2.2 of [RFC8446] SHOULD

SHOULD

MAY

[Sy2018]

3.5. Renegotiation in TLS 1.2

The recommendations in this section apply to TLS 1.2 only, because renegotiation has been

removed from TLS 1.3.

Renegotiation in TLS 1.2 is a handshake that establishes new cryptographic parameters for an

existing session. The mechanism existed in TLS 1.2 and in earlier protocol versions and was

improved following several major attacks including a plaintext injection attack, CVE-2009-3555

.

TLS 1.2 clients and servers implement the renegotiation_info extension, as defined in

.

TLS 1.2 clients send renegotiation_info in the Client Hello. If the server does not

acknowledge the extension, the client generate a fatal handshake_failure alert prior to

terminating the connection.

Rationale: It is not safe for a client to connect to a TLS 1.2 server that does not support

renegotiation_info regardless of whether either endpoint actually implements renegotiation.

See also .

A related attack resulting from TLS session parameters not being properly authenticated is a

Triple Handshake . To address this attack, TLS 1.2 implementations

support the extended_master_secret extension defined in .

[CVE]

MUST

[RFC5746]

MUST

MUST

Section 4.1 of [RFC5746]

[Triple-Handshake] MUST

[RFC7627]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 10

https://www.rfc-editor.org/rfc/rfc8446#section-2.2
https://www.rfc-editor.org/rfc/rfc5746#section-4.1

3.6. Post-Handshake Authentication

Renegotiation in TLS 1.2 was (partially) replaced in TLS 1.3 by separate post-handshake

authentication and key update mechanisms. In the context of protocols that multiplex requests

over a single connection (such as HTTP/2), post-handshake authentication has the

same problems as TLS 1.2 renegotiation. Multiplexed protocols follow the advice

provided for HTTP/2 in .

[RFC9113]

SHOULD

Section 9.2.3 of [RFC9113]

3.7. Server Name Indication (SNI)

TLS implementations support the Server Name Indication (SNI) extension defined in

 for those higher-level protocols that would benefit from it, including

HTTPS. However, the actual use of SNI in particular circumstances is a matter of local policy. At

the time of writing, a technology for encrypting the SNI (called Encrypted Client Hello) is being

worked on in the TLS Working Group . Once that method has been standardized and

widely implemented, it will likely be appropriate to recommend its usage in a future version of

this BCP.

Rationale: SNI supports deployment of multiple TLS-protected virtual servers on a single address,

and therefore enables fine-grained security for these virtual servers, by allowing each one to

have its own certificate. However, SNI also leaks the target domain for a given connection; this

information leak will be closed by use of TLS Encrypted Client Hello once that method has been

standardized.

In order to prevent the attacks described in , a server that does not recognize the

presented server name continue the handshake and instead fail with a

fatal-level unrecognized_name(112) alert. Note that this recommendation updates

, which stated:

If the server understood the ClientHello extension but does not recognize the server

name, the server take one of two actions: either abort the handshake by

sending a fatal-level unrecognized_name(112) alert or continue the handshake.

Clients abort the handshake if the server acknowledges the SNI extension but presents a

certificate with a different hostname than the one sent by the client.

MUST

Section 3 of [RFC6066]

[TLS-ECH]

[ALPACA]

SHOULD NOT SHOULD

Section 3 of

[RFC6066]

SHOULD

SHOULD

3.8. Application-Layer Protocol Negotiation (ALPN)

TLS implementations (both client- and server-side) support the Application-Layer Protocol

Negotiation (ALPN) extension .

In order to prevent "cross-protocol" attacks resulting from failure to ensure that a message

intended for use in one protocol cannot be mistaken for a message for use in another protocol,

servers are advised to strictly enforce the behavior prescribed in :

MUST

[RFC7301]

Section 3.2 of [RFC7301]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 11

https://www.rfc-editor.org/rfc/rfc9113#section-9.2.3
https://www.rfc-editor.org/rfc/rfc6066#section-3
https://www.rfc-editor.org/rfc/rfc6066#section-3
https://www.rfc-editor.org/rfc/rfc7301#section-3.2

In the event that the server supports no protocols that the client advertises, then the

server respond with a fatal 'no_application_protocol' alert.

Clients abort the handshake if the server acknowledges the ALPN extension but does not

select a protocol from the client list. Failure to do so can result in attacks such those described in

.

Protocol developers are strongly encouraged to register an ALPN identifier for their protocols.

This applies both to new protocols and to well-established protocols; however, because the latter

might have a large deployed base, strict enforcement of ALPN usage may not be feasible when an

ALPN identifier is registered for a well-established protocol.

SHALL

SHOULD

[ALPACA]

3.9. Multi-Server Deployment

Deployments that involve multiple servers or services can increase the size of the attack surface

for TLS. Two scenarios are of interest:

Deployments in which multiple services handle the same domain name via different

protocols (e.g., HTTP and IMAP). In this case, an attacker might be able to direct a connecting

endpoint to the service offering a different protocol and mount a cross-protocol attack. In a

cross-protocol attack, the client and server believe they are using different protocols, which

the attacker might exploit if messages sent in one protocol are interpreted as messages in the

other protocol with undesirable effects (see for more detailed information about

this class of attacks). To mitigate this threat, service providers deploy ALPN (see

Section 3.8). In addition, to the extent possible, they ensure that multiple services

handling the same domain name provide equivalent levels of security that are consistent

with the recommendations in this document; such measures include the handling of

configurations across multiple TLS servers and protections against compromise of

credentials held by those servers.

Deployments in which multiple servers providing the same service have different TLS

configurations. In this case, an attacker might be able to direct a connecting endpoint to a

server with a TLS configuration that is more easily exploitable (see for more

detailed information about this class of attacks). To mitigate this threat, service providers

 ensure that all servers providing the same service provide equivalent levels of

security that are consistent with the recommendations in this document.

1.

[ALPACA]

SHOULD

SHOULD

SHOULD

2.

[DROWN]

SHOULD

3.10. Zero Round-Trip Time (0-RTT) Data in TLS 1.3

The 0-RTT early data feature is new in TLS 1.3. It provides reduced latency when TLS connections

are resumed, at the potential cost of certain security properties. As a result, it requires special

attention from implementers on both the server and the client side. Typically, this extends to the

TLS library as well as protocol layers above it.

For HTTP over TLS, refer to for guidance.[RFC8470]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 12

For QUIC on TLS, refer to .

For other protocols, generic guidance is given in Section 8 and Appendix E.5 of . To

paraphrase Appendix E.5, applications avoid this feature unless an explicit specification

exists for the application protocol in question to clarify when 0-RTT is appropriate and secure.

This can take the form of an IETF RFC, a non-IETF standard, or documentation associated with a

non-standard protocol.

Section 9.2 of [RFC9001]

[RFC8446]

MUST

4. Recommendations: Cipher Suites

TLS 1.2 provided considerable flexibility in the selection of cipher suites. Unfortunately, the

security of some of these cipher suites has degraded over time to the point where some are

known to be insecure (this is one reason why TLS 1.3 restricted such flexibility). Incorrectly

configuring a server leads to no or reduced security. This section includes recommendations on

the selection and negotiation of cipher suites.

4.1. General Guidelines

Cryptographic algorithms weaken over time as cryptanalysis improves: algorithms that were

once considered strong become weak. Consequently, cipher suites using weak algorithms need to

be phased out and replaced with more secure cipher suites. This helps to ensure that the desired

security properties still hold. SSL/TLS has been in existence for well over 20 years and many of

the cipher suites that have been recommended in various versions of SSL/TLS are now

considered weak or at least not as strong as desired. Therefore, this section modernizes the

recommendations concerning cipher suite selection.

Implementations negotiate the cipher suites with NULL encryption.

Rationale: The NULL cipher suites do not encrypt traffic and so provide no confidentiality

services. Any entity in the network with access to the connection can view the plaintext of

contents being exchanged by the client and server. Nevertheless, this document does not

discourage software from implementing NULL cipher suites, since they can be useful for

testing and debugging.

Implementations negotiate RC4 cipher suites.

Rationale: The RC4 stream cipher has a variety of cryptographic weaknesses, as documented

in . Note that DTLS specifically forbids the use of RC4 already.

Implementations negotiate cipher suites offering less than 112 bits of security,

including so-called "export-level" encryption (which provides 40 or 56 bits of security).

Rationale: Based on , at least 112 bits of security is needed. 40-bit and 56-bit

security (found in so-called "export ciphers") are considered insecure today.

Implementations negotiate cipher suites that use algorithms offering less than

128 bits of security.

Rationale: Cipher suites that offer 112 or more bits but less than 128 bits of security are not

considered weak at this time; however, it is expected that their useful lifespan is short

enough to justify supporting stronger cipher suites at this time. 128-bit ciphers are expected

• MUST NOT

• MUST NOT

[RFC7465]

• MUST NOT

[RFC3766]

• SHOULD NOT

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 13

https://www.rfc-editor.org/rfc/rfc9001#section-9.2
https://www.rfc-editor.org/rfc/rfc8446#section-8
https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5
https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5

to remain secure for at least several years and 256-bit ciphers until the next fundamental

technology breakthrough. Note that, because of so-called "meet-in-the-middle" attacks

, some legacy cipher suites (e.g., 168-bit Triple DES (3DES)) have an

effective key length that is smaller than their nominal key length (112 bits in the case of

3DES). Such cipher suites should be evaluated according to their effective key length.

Implementations negotiate cipher suites based on RSA key transport, a.k.a.

"static RSA".

Rationale: These cipher suites, which have assigned values starting with the string

"TLS_RSA_WITH_*", have several drawbacks, especially the fact that they do not support

forward secrecy.

Implementations negotiate cipher suites based on non-ephemeral (static) finite-

field Diffie-Hellman (DH) key agreement. Similarly, implementations negotiate

non-ephemeral Elliptic Curve DH key agreement.

Rationale: The former cipher suites, which have assigned values prefixed by "TLS_DH_*",

have several drawbacks, especially the fact that they do not support forward secrecy. The

latter ("TLS_ECDH_*") also lack forward secrecy and are subject to invalid curve attacks

.

Implementations support and prefer to negotiate cipher suites offering forward

secrecy. However, TLS 1.2 implementations negotiate cipher suites based on

ephemeral finite-field Diffie-Hellman key agreement (i.e., "TLS_DHE_*" suites). This is

justified by the known fragility of the construction (see) and the limitation

around negotiation, including using , which has seen very limited uptake.

Rationale: Forward secrecy (sometimes called "perfect forward secrecy") prevents the

recovery of information that was encrypted with older session keys, thus limiting how far

back in time data can be decrypted when an attack is successful. See Sections 7.3 and 7.4 for

a detailed discussion.

[Multiple-Encryption]

• SHOULD NOT

• SHOULD NOT

SHOULD NOT

[Jager2015]

• MUST

SHOULD NOT

[RACCOON]

[RFC7919]

4.2. Cipher Suites for TLS 1.2

Given the foregoing considerations, implementation and deployment of the following cipher

suites is :

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

As these are Authenticated Encryption with Associated Data (AEAD) algorithms , these

cipher suites are supported only in TLS 1.2 and not in earlier protocol versions.

Typically, to prefer these suites, the order of suites needs to be explicitly configured in server

software. It would be ideal if server software implementations were to prefer these suites by

default.

RECOMMENDED

•

•

•

•

[RFC5116]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 14

Some devices have hardware support for AES Counter Mode with CBC-MAC (AES-CCM) but not

AES Galois/Counter Mode (AES-GCM), so they are unable to follow the foregoing

recommendations regarding cipher suites. There are even devices that do not support public key

cryptography at all, but these are out of scope entirely.

A cipher suite that operates in CBC (cipher block chaining) mode (e.g.,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256) be used unless the

encrypt_then_mac extension is also successfully negotiated. This requirement applies

to both client and server implementations.

When using ECDSA signatures for authentication of TLS peers, it is that

implementations use the NIST curve P-256. In addition, to avoid predictable or repeated nonces

(which could reveal the long-term signing key), it is that implementations

implement "deterministic ECDSA" as specified in and in line with the

recommendations in .

Note that implementations of "deterministic ECDSA" may be vulnerable to certain side-channel

and fault injection attacks precisely because of their determinism. While most fault injection

attacks described in the literature assume physical access to the device (and therefore are more

relevant in Internet of Things (IoT) deployments with poor or non-existent physical security),

some can be carried out remotely , e.g., as Rowhammer variants. In

deployments where side-channel attacks and fault injection attacks are a concern,

implementation strategies combining both randomness and determinism (for example, as

described in) can be used to avoid the risk of successful extraction of the

signing key.

SHOULD NOT

[RFC7366]

RECOMMENDED

RECOMMENDED

[RFC6979]

[RFC8446]

[Poddebniak2017] [Kim2014]

[CFRG-DET-SIGS]

4.2.1. Implementation Details

Clients include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the first proposal to

any server. Servers prefer this cipher suite over weaker cipher suites whenever it is

proposed, even if it is not the first proposal. Clients are of course free to offer stronger cipher

suites, e.g., using AES-256; when they do, the server prefer the stronger cipher suite

unless there are compelling reasons (e.g., seriously degraded performance) to choose otherwise.

The previous version of the TLS recommendations implicitly allowed the old RFC 5246

mandatory-to-implement cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. At the time of writing,

this cipher suite does not provide additional interoperability, except with very old clients. As

with other cipher suites that do not provide forward secrecy, implementations

support this cipher suite. Other application protocols specify other cipher suites as mandatory to

implement (MTI).

 allows clients and servers to negotiate ECDH parameters (curves). Both clients and

servers include the "Supported Elliptic Curves Extension" . Clients and servers

 support the NIST P‑256 (secp256r1) and X25519 (x25519) curves.

Note that deprecates all but the uncompressed point format. Therefore, if the client

sends an ec_point_formats extension, the ECPointFormatList contain a single element,

"uncompressed".

SHOULD

MUST

SHOULD

[RFC7525]

SHOULD NOT

[RFC8422]

SHOULD [RFC8422]

SHOULD [RFC8422] [RFC7748]

[RFC8422]

MUST

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 15

4.3. Cipher Suites for TLS 1.3

This document does not specify any cipher suites for TLS 1.3. Readers are referred to

 for cipher suite recommendations.

Section 9.1

of [RFC8446]

4.4. Limits on Key Usage

All ciphers have an upper limit on the amount of traffic that can be securely protected with any

given key. In the case of AEAD cipher suites, two separate limits are maintained for each key:

Confidentiality limit (CL), i.e., the number of records that can be encrypted.

Integrity limit (IL), i.e., the number of records that are allowed to fail authentication.

The latter applies to DTLS (and also to QUIC) but not to TLS itself, since TLS connections are torn

down on the first decryption failure.

When a sender is approaching CL, the implementation initiate a new handshake (in TLS

1.3, this can be achieved by sending a KeyUpdate message on the established session) to rotate

the session key. When a receiver has reached IL, the implementation close the

connection. Although these recommendations are a best practice, implementers need to be

aware that it is not always easy to accomplish them in protocols that are built on top of TLS/DTLS

without introducing coordination across layer boundaries. See for an

example of the cooperation that was necessary in QUIC between the crypto and transport layers

to support key updates. Note that in general, application protocols might not be able to emulate

that method given their more constrained interaction with TLS/DTLS. As a result of these

complexities, these recommendations are not mandatory.

For all TLS 1.3 cipher suites, readers are referred to for the values of CL

and IL. For all DTLS 1.3 cipher suites, readers are referred to .

For all AES-GCM cipher suites recommended for TLS 1.2 and DTLS 1.2 in this document, CL can

be derived by plugging the corresponding parameters into the inequalities in

 that apply to random, partially implicit nonces, i.e., the nonce construction used

in TLS 1.2. Although the obtained figures are slightly higher than those for TLS 1.3, it is

 that the same limit of 2
24.5

 records is used for both versions.

For all AES-GCM cipher suites recommended for DTLS 1.2, IL (obtained from the same

inequalities referenced above) is 2
28

.

1.

2.

SHOULD

SHOULD

Section 6 of [RFC9001]

Section 5.5 of [RFC8446]

Section 4.5.3 of [RFC9147]

Section 6.1 of

[AEAD-LIMITS]

RECOMMENDED

4.5. Public Key Length

When using the cipher suites recommended in this document, two public keys are normally used

in the TLS handshake: one for the Diffie-Hellman key agreement and one for server

authentication. Where a client certificate is used, a third public key is added.

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 16

https://www.rfc-editor.org/rfc/rfc8446#section-9.1
https://www.rfc-editor.org/rfc/rfc9001#section-6
https://www.rfc-editor.org/rfc/rfc8446#section-5.5
https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05#section-6.1

With a key exchange based on modular exponential (MODP) Diffie-Hellman groups ("DHE"

cipher suites), DH key lengths of at least 2048 bits are .

Rationale: For various reasons, in practice, DH keys are typically generated in lengths that are

powers of two (e.g., 2
10

 = 1024 bits, 2
11

 = 2048 bits, 2
12

 = 4096 bits). Because a DH key of 1228 bits

would be roughly equivalent to only an 80-bit symmetric key , it is better to use keys

longer than that for the "DHE" family of cipher suites. A DH key of 1926 bits would be roughly

equivalent to a 100-bit symmetric key . A DH key of 2048 bits (equivalent to a 112-bit

symmetric key) is the minimum allowed by the latest revision of as of this

writing (see in particular Appendix D of that document).

As noted in , correcting for the emergence of The Weizmann Institute Relation Locator

(TWIRL) machine would imply that 1024-bit DH keys yield about 61 bits of equivalent

strength and that a 2048-bit DH key would yield about 92 bits of equivalent strength. The Logjam

attack further demonstrates that 1024-bit Diffie-Hellman parameters should be avoided.

With regard to ECDH keys, implementers are referred to the IANA "TLS Supported Groups"

registry (formerly known as the "EC Named Curve Registry") within the "Transport Layer

Security (TLS) Parameters" registry and in particular to the "recommended" groups.

Curves of less than 224 bits be used. This recommendation is in line with the latest

revision of .

When using RSA, servers authenticate using certificates with at least a 2048-bit modulus

for the public key. In addition, the use of the SHA-256 hash algorithm is and

SHA-1 or MD5 be used (for more details, see also , for which

the current version at the time of writing is 1.8.4). Clients indicate to servers that they

request SHA-256 by using the "Signature Algorithms" extension defined in TLS 1.2. For TLS 1.3,

the same requirement is already specified by .

REQUIRED

[RFC3766]

[RFC3766]

[NIST.SP.800-56A]

[RFC3766]

[TWIRL]

[Logjam]

[IANA_TLS]

MUST NOT

[NIST.SP.800-56A]

MUST

RECOMMENDED

MUST NOT [RFC9155] [CAB-Baseline]

MUST

[RFC8446]

4.6. Truncated HMAC

Implementations use the Truncated HMAC Extension, defined in

.

Rationale: The extension does not apply to the AEAD cipher suites recommended above.

However, it does apply to most other TLS cipher suites. Its use has been shown to be insecure in

.

MUST NOT Section 7 of

[RFC6066]

[PatersonRS11]

5. Applicability Statement

The recommendations of this document primarily apply to the implementation and deployment

of application protocols that are most commonly used with TLS and DTLS on the Internet today.

Examples include, but are not limited to:

Web software and services that wish to protect HTTP traffic with TLS.

Email software and services that wish to protect IMAP, Post Office Protocol version 3 (POP3),

or SMTP traffic with TLS.

•

•

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 17

https://www.rfc-editor.org/rfc/rfc6066#section-7

Instant-messaging software and services that wish to protect Extensible Messaging and

Presence Protocol (XMPP) or Internet Relay Chat (IRC) traffic with TLS.

Realtime media software and services that wish to protect Secure Realtime Transport

Protocol (SRTP) traffic with DTLS.

This document does not modify the implementation and deployment recommendations (e.g.,

mandatory-to-implement cipher suites) prescribed by existing application protocols that employ

TLS or DTLS. If the community that uses such an application protocol wishes to modernize its

usage of TLS or DTLS to be consistent with the best practices recommended here, it needs to

explicitly update the existing application protocol definition (one example is , which

updates).

Designers of new application protocols developed through the Internet Standards Process

 are expected at minimum to conform to the best practices recommended here, unless

they provide documentation of compelling reasons that would prevent such conformance (e.g.,

widespread deployment on constrained devices that lack support for the necessary algorithms).

Although many of the recommendations provided here might also apply to QUIC insofar that it

uses the TLS 1.3 handshake protocol, QUIC and other such secure transport protocols are out of

scope of this document. For QUIC specifically, readers are referred to .

This document does not address the use of TLS in constrained-node networks . For

recommendations regarding the profiling of TLS and DTLS for small devices with severe

constraints on power, memory, and processing resources, the reader is referred to and

.

•

•

[RFC7590]

[RFC6120]

[RFC2026]

Section 9.2 of [RFC9001]

[RFC7228]

[RFC7925]

[IOT-PROFILE]

Confidentiality:

Data integrity:

Authentication:

5.1. Security Services

This document provides recommendations for an audience that wishes to secure their

communication with TLS to achieve the following:

all application-layer communication is encrypted with the goal that no party

should be able to decrypt it except the intended receiver.

any changes made to the communication in transit are detectable by the

receiver.

an endpoint of the TLS communication is authenticated as the intended entity

to communicate with.

With regard to authentication, TLS enables authentication of one or both endpoints in the

communication. In the context of opportunistic security , TLS is sometimes used

without authentication. As discussed in Section 5.2, considerations for opportunistic security are

not in scope for this document.

If deployers deviate from the recommendations given in this document, they need to be aware

that they might lose access to one of the foregoing security services.

[RFC7435]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 18

https://www.rfc-editor.org/rfc/rfc9001#section-9.2

This document applies only to environments where confidentiality is required. It requires

algorithms and configuration options that enforce secrecy of the data in transit.

This document also assumes that data integrity protection is always one of the goals of a

deployment. In cases where integrity is not required, it does not make sense to employ TLS in the

first place. There are attacks against confidentiality-only protection that utilize the lack of

integrity to also break confidentiality (see, for instance, in the context of IPsec).

This document addresses itself to application protocols that are most commonly used on the

Internet with TLS and DTLS. Typically, all communication between TLS clients and TLS servers

requires all three of the above security services. This is particularly true where TLS clients are

user agents like web browsers or email clients.

This document does not address the rarer deployment scenarios where one of the above three

properties is not desired, such as the use case described in Section 5.2. As another scenario

where confidentiality is not needed, consider a monitored network where the authorities in

charge of the respective traffic domain require full access to unencrypted (plaintext) traffic and

where users collaborate and send their traffic in the clear.

[DegabrieleP07]

5.2. Opportunistic Security

There are several important scenarios in which the use of TLS is optional, i.e., the client decides

dynamically ("opportunistically") whether to use TLS with a particular server or to connect in the

clear. This practice, often called "opportunistic security", is described at length in and

is often motivated by a desire for backward compatibility with legacy deployments.

In these scenarios, some of the recommendations in this document might be too strict, since

adhering to them could cause fallback to cleartext, a worse outcome than using TLS with an

outdated protocol version or cipher suite.

[RFC7435]

6. IANA Considerations

This document has no IANA actions.

7. Security Considerations

This entire document discusses the security practices directly affecting applications using the TLS

protocol. This section contains broader security considerations related to technologies used in

conjunction with or by TLS. The reader is referred to the Security Considerations sections of TLS

1.3 , DTLS 1.3 , TLS 1.2 , and DTLS 1.2 for further

context.

[RFC8446] [RFC9147] [RFC5246] [RFC6347]

7.1. Host Name Validation

Application authors should take note that some TLS implementations do not validate host names.

If the TLS implementation they are using does not validate host names, authors might need to

write their own validation code or consider using a different TLS implementation.

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 19

It is noted that the requirements regarding host name validation (and, in general, binding

between the TLS layer and the protocol that runs above it) vary between different protocols. For

HTTPS, these requirements are defined by Sections 4.3.3, 4.3.4, and 4.3.5 of .

Host name validation is security-critical for all common TLS use cases. Without it, TLS ensures

that the certificate is valid and guarantees possession of the private key but does not ensure that

the connection terminates at the desired endpoint. Readers are referred to for further

details regarding generic host name validation in the TLS context. In addition, that RFC contains

a long list of application protocols, some of which implement a policy very different from HTTPS.

If the host name is discovered indirectly and insecurely (e.g., by a cleartext DNS query for an SRV

or Mail Exchange (MX) record), it be used as a reference identifier even

when it matches the presented certificate. This proviso does not apply if the host name is

discovered securely (for further discussion, see and).

Host name validation typically applies only to the leaf "end entity" certificate. Naturally, in order

to ensure proper authentication in the context of the PKI, application clients need to verify the

entire certification path in accordance with .

[RFC9110]

[RFC6125]

SHOULD NOT [RFC6125]

[RFC7673] [RFC7672]

[RFC5280]

7.2. AES-GCM

Section 4.2 recommends the use of the AES-GCM authenticated encryption algorithm. Please

refer to for security considerations that apply specifically to AES-GCM

when used with TLS.

Section 6 of [RFC5288]

7.2.1. Nonce Reuse in TLS 1.2

The existence of deployed TLS stacks that mistakenly reuse the AES-GCM nonce is documented in

, showing there is an actual risk of AES-GCM getting implemented insecurely and

thus making TLS sessions that use an AES-GCM cipher suite vulnerable to attacks such as

. (See records: CVE-2016-0270, CVE-2016-10213, CVE-2016-10212, and

CVE-2017-5933.)

While this problem has been fixed in TLS 1.3, which enforces a deterministic method to generate

nonces from record sequence numbers and shared secrets for all its AEAD cipher suites

(including AES-GCM), TLS 1.2 implementations could still choose their own (potentially insecure)

nonce generation methods.

It is therefore that TLS 1.2 implementations use the 64-bit sequence number to

populate the nonce_explicit part of the GCM nonce, as described in the first two paragraphs of

. This stronger recommendation updates , which

specifies that the use of 64-bit sequence numbers to populate the nonce_explicit field is

optional.

We note that at the time of writing, there are no cipher suites defined for nonce-reuse-resistant

algorithms such as AES-GCM-SIV .

[Boeck2016]

[Joux2006] [CVE]

RECOMMENDED

Section 5.3 of [RFC8446] Section 3 of [RFC5288]

[RFC8452]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 20

https://www.rfc-editor.org/rfc/rfc9110#section-4.3.3
https://www.rfc-editor.org/rfc/rfc9110#section-4.3.4
https://www.rfc-editor.org/rfc/rfc9110#section-4.3.5
https://www.rfc-editor.org/rfc/rfc5288#section-6
https://www.rfc-editor.org/rfc/rfc8446#section-5.3
https://www.rfc-editor.org/rfc/rfc5288#section-3

7.3. Forward Secrecy

Forward secrecy (also called "perfect forward secrecy" or "PFS" and defined in) is a

defense against an attacker who records encrypted conversations where the session keys are

only encrypted with the communicating parties' long-term keys.

Should the attacker be able to obtain these long-term keys at some point later in time, the session

keys and thus the entire conversation could be decrypted.

In the context of TLS and DTLS, such compromise of long-term keys is not entirely implausible. It

can happen, for example, due to:

A client or server being attacked by some other attack vector, and the private key retrieved.

A long-term key retrieved from a device that has been sold or otherwise decommissioned

without prior wiping.

A long-term key used on a device as a default key .

A key generated by a trusted third party like a CA and later retrieved from it by either

extortion or compromise .

A cryptographic breakthrough or the use of asymmetric keys with insufficient length

.

Social engineering attacks against system administrators.

Collection of private keys from inadequately protected backups.

Forward secrecy ensures in such cases that it is not feasible for an attacker to determine the

session keys even if the attacker has obtained the long-term keys some time after the

conversation. It also protects against an attacker who is in possession of the long-term keys but

remains passive during the conversation.

Forward secrecy is generally achieved by using the Diffie-Hellman scheme to derive session keys.

The Diffie-Hellman scheme has both parties maintain private secrets and send parameters over

the network as modular powers over certain cyclic groups. The properties of the so-called

Discrete Logarithm Problem (DLP) allow the parties to derive the session keys without an

eavesdropper being able to do so. There is currently no known attack against DLP if sufficiently

large parameters are chosen. A variant of the Diffie-Hellman scheme uses elliptic curves instead

of the originally proposed modular arithmetic. Given the current state of the art, Elliptic Curve

Diffie-Hellman appears to be more efficient, permits shorter key lengths, and allows less freedom

for implementation errors than finite-field Diffie-Hellman.

Unfortunately, many TLS/DTLS cipher suites were defined that do not feature forward secrecy,

e.g., TLS_RSA_WITH_AES_256_CBC_SHA256. This document therefore advocates strict use of

forward-secrecy-only ciphers.

[RFC4949]

•

•

• [Heninger2012]

•

[Soghoian2011]

•

[Kleinjung2010]

•

•

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 21

7.4. Diffie-Hellman Exponent Reuse

For performance reasons, it is not uncommon for TLS implementations to reuse Diffie-Hellman

and Elliptic Curve Diffie-Hellman exponents across multiple connections. Such reuse can result

in major security issues:

If exponents are reused for too long (in some cases, even as little as a few hours), an attacker

who gains access to the host can decrypt previous connections. In other words, exponent

reuse negates the effects of forward secrecy.

TLS implementations that reuse exponents should test the DH public key they receive for

group membership, in order to avoid some known attacks. These tests are not standardized

in TLS at the time of writing, although general guidance in this area is provided by

 and available in many protocol implementations.

Under certain conditions, the use of static finite-field DH keys, or of ephemeral finite-field DH

keys that are reused across multiple connections, can lead to timing attacks (such as those

described in) on the shared secrets used in Diffie-Hellman key exchange.

An "invalid curve" attack can be mounted against Elliptic Curve DH if the victim does not

verify that the received point lies on the correct curve. If the victim is reusing the DH secrets,

the attacker can repeat the probe varying the points to recover the full secret (see

 and).

To address these concerns:

TLS implementations use static finite-field DH keys and reuse

ephemeral finite-field DH keys across multiple connections.

Server implementations that want to reuse Elliptic Curve DH keys either use a "safe

curve" (e.g., X25519) or perform the checks described in on

the received points.

•

•

[NIST.SP.

800-56A]

•

[RACCOON]

•

[Antipa2003] [Jager2015]

• SHOULD NOT SHOULD NOT

• SHOULD

[SAFECURVES] [NIST.SP.800-56A]

7.5. Certificate Revocation

The following considerations and recommendations represent the current state of the art

regarding certificate revocation, even though no complete and efficient solution exists for the

problem of checking the revocation status of common public key certificates :

Certificate revocation is an important tool when recovering from attacks on the TLS

implementation as well as cases of misissued certificates. TLS implementations

implement a strategy to distrust revoked certificates.

Although Certificate Revocation Lists (CRLs) are the most widely supported mechanism for

distributing revocation information, they have known scaling challenges that limit their

usefulness, despite workarounds such as partitioned CRLs and delta CRLs. The more modern

 and the follow-on Let's Revoke build on the availability of Certificate

Transparency logs and aggressive compression to allow practical use of the CRL

infrastructure, but at the time of writing, neither solution is deployed for client-side

revocation processing at scale.

[RFC5280]

•

MUST

•

[CRLite] [LetsRevoke]

[RFC9162]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 22

8. References

8.1. Normative References

Proprietary mechanisms that embed revocation lists in the web browser's configuration

database cannot scale beyond the few most heavily used web servers.

The Online Certification Status Protocol (OCSP) in its basic form presents both

scaling and privacy issues. In addition, clients typically "soft-fail", meaning that they do not

abort the TLS connection if the OCSP server does not respond. (However, this might be a

workaround to avoid denial-of-service attacks if an OCSP responder is taken offline.) For a

recent survey of the status of OCSP deployment in the web PKI, see .

The TLS Certificate Status Request extension (), commonly called

"OCSP stapling", resolves the operational issues with OCSP. However, it is still ineffective in

the presence of an active on-path attacker because the attacker can simply ignore the client's

request for a stapled OCSP response.

 defines a certificate extension that indicates that clients must expect stapled OCSP

responses for the certificate and must abort the handshake ("hard-fail") if such a response is

not available.

OCSP stapling as used in TLS 1.2 does not extend to intermediate certificates within a

certificate chain. The Multiple Certificate Status extension addresses this

shortcoming, but it has seen little deployment and had been deprecated by . As a

result, although this extension was recommended for TLS 1.2 in , it is no longer

recommended by this document.

TLS 1.3 () allows the association of OCSP information with

intermediate certificates by using an extension to the CertificateEntry structure. However,

using this facility remains impractical because many certification authorities (CAs) either do

not publish OCSP for CA certificates or publish OCSP reports with a lifetime that is too long to

be useful.

Both CRLs and OCSP depend on relatively reliable connectivity to the Internet, which might

not be available to certain kinds of nodes. A common example is newly provisioned devices

that need to establish a secure connection in order to boot up for the first time.

For the common use cases of public key certificates in TLS, servers support the following

as a best practice given the current state of the art and as a foundation for a possible future

solution: OCSP and OCSP stapling using the status_request extension defined in

. Note that the exact mechanism for embedding the status_request extension differs

between TLS 1.2 and 1.3. As a matter of local policy, server operators request that CAs issue

must-staple certificates for the server and/or for client authentication, but we

recommend reviewing the operational conditions before deciding on this approach.

The considerations in this section do not apply to scenarios where the DNS-Based Authentication

of Named Entities (DANE) TLSA resource record is used to signal to a client which

certificate a server considers valid and good to use for TLS connections.

•

• [RFC6960]

[Chung18]

• Section 8 of [RFC6066]

• [RFC7633]

•

[RFC6961]

[RFC8446]

[RFC7525]

• Section 4.4.2.1 of [RFC8446]

•

SHOULD

[RFC6960]

[RFC6066]

MAY

[RFC7633]

[RFC6698]

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 23

https://www.rfc-editor.org/rfc/rfc6066#section-8
https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2.1

[RFC2119]

[RFC3766]

[RFC5246]

[RFC5288]

[RFC5746]

[RFC6066]

[RFC6125]

[RFC6176]

[RFC6347]

[RFC6979]

[RFC7301]

[RFC7366]

, , ,

, , March 1997,

.

 and ,

, , , , April

2004, .

 and ,

, , , August 2008,

.

, , and ,

, , , August 2008,

.

, , , and ,

, , , February

2010, .

,

, , , January 2011,

.

 and ,

,

, , March 2011,

.

 and , ,

, , March 2011,

.

 and , ,

, , January 2012,

.

,

, ,

, August 2013, .

, , , and ,

, ,

, July 2014, .

,

, , ,

September 2014, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Orman, H. P. Hoffman "Determining Strengths For Public Keys Used For

Exchanging Symmetric Keys" BCP 86 RFC 3766 DOI 10.17487/RFC3766

<https://www.rfc-editor.org/info/rfc3766>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version

1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/

info/rfc5246>

Salowey, J. Choudhury, A. D. McGrew "AES Galois Counter Mode (GCM)

Cipher Suites for TLS" RFC 5288 DOI 10.17487/RFC5288 <https://

www.rfc-editor.org/info/rfc5288>

Rescorla, E. Ray, M. Dispensa, S. N. Oskov "Transport Layer Security (TLS)

Renegotiation Indication Extension" RFC 5746 DOI 10.17487/RFC5746

<https://www.rfc-editor.org/info/rfc5746>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension

Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-

editor.org/info/rfc6066>

Saint-Andre, P. J. Hodges "Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using X.

509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)" RFC

6125 DOI 10.17487/RFC6125 <https://www.rfc-editor.org/info/

rfc6125>

Turner, S. T. Polk "Prohibiting Secure Sockets Layer (SSL) Version 2.0" RFC

6176 DOI 10.17487/RFC6176 <https://www.rfc-editor.org/info/

rfc6176>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"

RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/

rfc6347>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and

Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/

RFC6979 <https://www.rfc-editor.org/info/rfc6979>

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)

Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/

RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Gutmann, P. "Encrypt-then-MAC for Transport Layer Security (TLS) and

Datagram Transport Layer Security (DTLS)" RFC 7366 DOI 10.17487/RFC7366

<https://www.rfc-editor.org/info/rfc7366>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 24

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3766
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5746
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6176
https://www.rfc-editor.org/info/rfc6176
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7366

[RFC7465]

[RFC7627]

[RFC7748]

[RFC8174]

[RFC8422]

[RFC8446]

[RFC8996]

[RFC9147]

[RFC9155]

[AEAD-LIMITS]

[ALPACA]

[Antipa2003]

, , , ,

February 2015, .

, , , , and ,

, , , September 2015,

.

, , and , , ,

, January 2016, .

, ,

, , , May 2017,

.

, , and ,

,

, , August 2018,

.

, , ,

, August 2018, .

 and , , , ,

, March 2021, .

, , and ,

, , , April

2022, .

, , and ,

, , ,

December 2021, .

8.2. Informative References

, , and , ,

, , 11 July 2022,

.

, , , , , ,

, and ,

,

, August 2021,

.

, , , , and ,

, , December 2003,

.

Popov, A. "Prohibiting RC4 Cipher Suites" RFC 7465 DOI 10.17487/RFC7465

<https://www.rfc-editor.org/info/rfc7465>

Bhargavan, K., Ed. Delignat-Lavaud, A. Pironti, A. Langley, A. M. Ray

"Transport Layer Security (TLS) Session Hash and Extended Master Secret

Extension" RFC 7627 DOI 10.17487/RFC7627 <https://www.rfc-

editor.org/info/rfc7627>

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748

DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Nir, Y. Josefsson, S. M. Pegourie-Gonnard "Elliptic Curve Cryptography

(ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier"

RFC 8422 DOI 10.17487/RFC8422 <https://www.rfc-editor.org/info/

rfc8422>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Moriarty, K. S. Farrell "Deprecating TLS 1.0 and TLS 1.1" BCP 195 RFC 8996

DOI 10.17487/RFC8996 <https://www.rfc-editor.org/info/rfc8996>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer

Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Velvindron, L. Moriarty, K. A. Ghedini "Deprecating MD5 and SHA-1

Signature Hashes in TLS 1.2 and DTLS 1.2" RFC 9155 DOI 10.17487/RFC9155

<https://www.rfc-editor.org/info/rfc9155>

Günther, F. Thomson, M. C. A. Wood "Usage Limits on AEAD Algorithms"

Work in Progress Internet-Draft, draft-irtf-cfrg-aead-limits-05

<https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05>

Brinkmann, M. Dresen, C. Merget, R. Poddebniak, D. Müller, J. Somorovsky, J.

Schwenk, J. S. Schinzel "ALPACA: Application Layer Protocol Confusion -

Analyzing and Mitigating Cracks in TLS Authentication" 30th USENIX Security

Symposium (USENIX Security 21) <https://www.usenix.org/

conference/usenixsecurity21/presentation/brinkmann>

Antipa, A. Brown, D. R. L. Menezes, A. Struik, R. S. Vanstone "Validation of

Elliptic Curve Public Keys" Public Key Cryptography - PKC 2003

<https://doi.org/10.1007/3-540-36288-6_16>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 25

https://www.rfc-editor.org/info/rfc7465
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8996
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9155
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05
https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann
https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann
https://doi.org/10.1007/3-540-36288-6_16

[Boeck2016]

[CAB-Baseline]

[CFRG-DET-SIGS]

[Chung18]

[CRLite]

[CVE]

[DegabrieleP07]

[DROWN]

[Heninger2012]

[IANA_TLS]

[IOT-PROFILE]

, , , , and ,

, May 2016,

.

,

, , April 2022,

.

, , and ,

, ,

, 8 August 2022,

.

, , , , , ,

, , , and , ,

,

, October 2018,

.

, , , , , and ,

,

, , May 2017,

.

, , .

 and ,

, ,

, May 2007, .

, , , , , ,

, , , , , ,

, , and , ,

, August 2016,

.

, , , and ,

,

, August 2012.

, ,

.

 and , ,

, , 6 July 2022,

.

Böck, H. Zauner, A. Devlin, S. Somorovsky, J. P. Jovanovic "Nonce-

Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS"

<https://eprint.iacr.org/2016/475.pdf>

CA/Browser Forum "Baseline Requirements for the Issuance and Management

of Publicly-Trusted Certificates" Version 1.8.4 <https://cabforum.org/

documents/>

Preuß Mattsson, J. Thormarker, E. S. Ruohomaa "Deterministic ECDSA

and EdDSA Signatures with Additional Randomness" Work in Progress

Internet-Draft, draft-irtf-cfrg-det-sigs-with-noise-00 <https://

datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00>

Chung, T. Lok, J. Chandrasekaran, B. Choffnes, D. Levin, D. Maggs, B. Mislove,

A. Rula, J. Sullivan, N. C. Wilson "Is the Web Ready for OCSP Must-Staple?"

Proceedings of the Internet Measurement Conference 2018 DOI

10.1145/3278532.3278543 <https://doi.org/

10.1145/3278532.3278543>

Larisch, J. Choffnes, D. Levin, D. Maggs, B. Mislove, A. C. Wilson "CRLite:

A Scalable System for Pushing All TLS Revocations to All Browsers" 2017 IEEE

Symposium on Security and Privacy (SP) DOI 10.1109/sp.2017.17

<https://doi.org/10.1109/sp.2017.17>

MITRE "Common Vulnerabilities and Exposures" <https://cve.mitre.org>

Degabriele, J. K. Paterson "Attacking the IPsec Standards in Encryption-

only Configurations" 2007 IEEE Symposium on Security and Privacy (SP '07)

DOI 10.1109/sp.2007.8 <https://doi.org/10.1109/sp.2007.8>

Aviram, N. Schinzel, S. Somorovsky, J. Heninger, N. Dankel, M. Steube, J.

Valenta, L. Adrian, D. Halderman, J. Dukhovni, V. Käsper, E. Cohney, S. Engels,

S. Paar, C. Y. Shavitt "DROWN: Breaking TLS using SSLv2" 25th USENIX

Security Symposium (USENIX Security 16) <https://

www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/

aviram>

Heninger, N. Durumeric, Z. Wustrow, E. J. A. Halderman "Mining Your

Ps and Qs: Detection of Widespread Weak Keys in Network Devices" 21st Usenix

Security Symposium

IANA "Transport Layer Security (TLS) Parameters" <https://www.iana.org/

assignments/tls-parameters>

Tschofenig, H. T. Fossati "TLS/DTLS 1.3 Profiles for the Internet of Things"

Work in Progress Internet-Draft, draft-ietf-uta-tls13-iot-profile-05

<https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-05>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 26

https://eprint.iacr.org/2016/475.pdf
https://cabforum.org/documents/
https://cabforum.org/documents/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-det-sigs-with-noise-00
https://doi.org/10.1145/3278532.3278543
https://doi.org/10.1145/3278532.3278543
https://doi.org/10.1109/sp.2017.17
https://cve.mitre.org
https://doi.org/10.1109/sp.2007.8
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.iana.org/assignments/tls-parameters
https://www.iana.org/assignments/tls-parameters
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-05

[Jager2015]

[Joux2006]

[Kim2014]

[Kleinjung2010]

[LetsRevoke]

[Logjam]

[Multiple-Encryption]

[NIST.SP.800-56A]

[PatersonRS11]

, , and ,

, ,

, 2015,

.

, , 2006,

.

, , , , , , , , and

,

, , July 2014,

.

, , , , , , ,

, , , , , and

, ,

, , 2010,

.

, , and ,

,

, , February 2020,

.

, , , , , ,

, , , , , ,

, and ,

,

,

, October 2015,

.

 and , ,

,

, July 1981, .

,

,

, , ,

April 2018, .

, , and ,

,

, , December 2011,

.

Jager, T. Schwenk, J. J. Somorovsky "Practical Invalid Curve Attacks on

TLS-ECDH" Computer Security -- ESORICS 2015, pp. 407-425 DOI

10.1007/978-3-319-24174-6_21 <https://doi.org/

10.1007/978-3-319-24174-6_21>

Joux, A. "Authentication Failures in NIST version of GCM" <https://

csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/

comments/800-38-series-drafts/gcm/joux_comments.pdf>

Kim, Y. Daly, R. Kim, J. Fallin, C. Lee, J. H. Lee, D. Wilkerson, C. Lai, K. O.

Mutlu "Flipping Bits in Memory Without Accessing Them: An Experimental

Study of DRAM Disturbance Errors" DOI 10.1109/ISCA.2014.6853210

<https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf>

Kleinjung, T. Aoki, K. Franke, J. Lenstra, A. Thomé, E. Bos, J. Gaudry, P.

Kruppa, A. Montgomery, P. Osvik, D. te Riele, H. Timofeev, A. P.

Zimmermann "Factorization of a 768-Bit RSA Modulus" Advances in Cryptology

- CRYPTO 2010, pp. 333-350 DOI 10.1007/978-3-642-14623-7_18 <https://

doi.org/10.1007/978-3-642-14623-7_18>

Smith, T. Dickinson, L. K. Seamons "Let's Revoke: Scalable Global

Certificate Revocation" Proceedings 2020 Network and Distributed System

Security Symposium DOI 10.14722/ndss.2020.24084 <https://

doi.org/10.14722/ndss.2020.24084>

Adrian, D. Bhargavan, K. Durumeric, Z. Gaudry, P. Green, M. Halderman, J.

Heninger, N. Springall, D. Thomé, E. Valenta, L. VanderSloot, B. Wustrow, E.

Zanella-Béguelin, S. P. Zimmermann "Imperfect Forward Secrecy: How

Diffie-Hellman Fails in Practice" Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, pp. 5-17 DOI

10.1145/2810103.2813707 <https://doi.org/

10.1145/2810103.2813707>

Merkle, R. M. Hellman "On the security of multiple encryption"

Communications of the ACM, Vol. 24, Issue 7, pp. 465-467 DOI

10.1145/358699.358718 <https://doi.org/10.1145/358699.358718>

National Institute of Standards and Technology "Recommendation for Pair-

Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography"

Revision 3 NIST Special Publication 800-56A DOI 10.6028/NIST.SP.800-56Ar3

<https://doi.org/10.6028/NIST.SP.800-56Ar3>

Paterson, K. Ristenpart, T. T. Shrimpton "Tag Size Does Matter: Attacks

and Proofs for the TLS Record Protocol" Proceedings of the 17th International

conference on The Theory and Application of Cryptology and Information

Security, pp. 372-389 DOI 10.1007/978-3-642-25385-0_20

<https://doi.org/10.1007/978-3-642-25385-0_20>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 27

https://doi.org/10.1007/978-3-319-24174-6_21
https://doi.org/10.1007/978-3-319-24174-6_21
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.14722/ndss.2020.24084
https://doi.org/10.14722/ndss.2020.24084
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/358699.358718
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.1007/978-3-642-25385-0_20

[Poddebniak2017]

[POODLE]

[RACCOON]

[RFC2026]

[RFC2246]

[RFC3261]

[RFC3602]

[RFC4346]

[RFC4347]

[RFC4949]

[RFC5077]

[RFC5116]

[RFC5280]

, , , , and ,

,

,

, April 2018, .

, , October 2014,

.

, , , , , and

,

, , 2021,

.

, , , ,

, October 1996, .

 and , , ,

, January 1999, .

, , , , , ,

, and , , ,

, June 2002, .

, , and ,

, , , September 2003,

.

 and ,

, , , April 2006,

.

 and , , ,

, April 2006, .

, , , ,

, August 2007, .

, , , and ,

, ,

, January 2008, .

, ,

, , January 2008,

.

, , , , , and ,

, , , May 2008,

.

Poddebniak, D. Somorovsky, J. Schinzel, S. Lochter, M. P. Rösler

"Attacking Deterministic Signature Schemes using Fault Attacks" Conference:

2018 IEEE European Symposium on Security and Privacy DOI 10.1109/EuroSP.

2018.00031 <https://eprint.iacr.org/2017/1014.pdf>

US-CERT "SSL 3.0 Protocol Vulnerability and POODLE Attack"

<https://www.us-cert.gov/ncas/alerts/TA14-290A>

Merget, R. Brinkmann, M. Aviram, N. Somorovsky, J. Mittmann, J. J.

Schwenk "Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles

in TLS-DH(E)" 30th USENIX Security Symposium (USENIX Security 21)

<https://www.usenix.org/conference/usenixsecurity21/presentation/merget>

Bradner, S. "The Internet Standards Process -- Revision 3" BCP 9 RFC 2026 DOI

10.17487/RFC2026 <https://www.rfc-editor.org/info/rfc2026>

Dierks, T. C. Allen "The TLS Protocol Version 1.0" RFC 2246 DOI 10.17487/

RFC2246 <https://www.rfc-editor.org/info/rfc2246>

Rosenberg, J. Schulzrinne, H. Camarillo, G. Johnston, A. Peterson, J. Sparks, R.

Handley, M. E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI

10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Frankel, S. Glenn, R. S. Kelly "The AES-CBC Cipher Algorithm and Its Use

with IPsec" RFC 3602 DOI 10.17487/RFC3602 <https://www.rfc-

editor.org/info/rfc3602>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version

1.1" RFC 4346 DOI 10.17487/RFC4346 <https://www.rfc-editor.org/

info/rfc4346>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security" RFC 4347

DOI 10.17487/RFC4347 <https://www.rfc-editor.org/info/rfc4347>

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI

10.17487/RFC4949 <https://www.rfc-editor.org/info/rfc4949>

Salowey, J. Zhou, H. Eronen, P. H. Tschofenig "Transport Layer Security

(TLS) Session Resumption without Server-Side State" RFC 5077 DOI 10.17487/

RFC5077 <https://www.rfc-editor.org/info/rfc5077>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC

5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/info/

rfc5116>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk

"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-

editor.org/info/rfc5280>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 28

https://eprint.iacr.org/2017/1014.pdf
https://www.us-cert.gov/ncas/alerts/TA14-290A
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.rfc-editor.org/info/rfc2026
https://www.rfc-editor.org/info/rfc2246
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3602
https://www.rfc-editor.org/info/rfc3602
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4347
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280

[RFC5321]

[RFC6101]

[RFC6120]

[RFC6698]

[RFC6797]

[RFC6960]

[RFC6961]

[RFC7228]

[RFC7435]

[RFC7457]

[RFC7507]

[RFC7525]

, , , ,

October 2008, .

, , and ,

, , , August 2011,

.

, ,

, , March 2011,

.

 and ,

, ,

, August 2012, .

, , and , ,

, , November 2012,

.

, , , , , and ,

,

, , June 2013,

.

,

, , , June 2013,

.

, , and ,

, , , May 2014,

.

, ,

, , December 2014,

.

, , and ,

, ,

, February 2015, .

 and ,

, , , April

2015, .

, , and ,

,

, , , May 2015,

.

Klensin, J. "Simple Mail Transfer Protocol" RFC 5321 DOI 10.17487/RFC5321

<https://www.rfc-editor.org/info/rfc5321>

Freier, A. Karlton, P. P. Kocher "The Secure Sockets Layer (SSL) Protocol

Version 3.0" RFC 6101 DOI 10.17487/RFC6101 <https://www.rfc-

editor.org/info/rfc6101>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core" RFC

6120 DOI 10.17487/RFC6120 <https://www.rfc-editor.org/info/

rfc6120>

Hoffman, P. J. Schlyter "The DNS-Based Authentication of Named Entities

(DANE) Transport Layer Security (TLS) Protocol: TLSA" RFC 6698 DOI 10.17487/

RFC6698 <https://www.rfc-editor.org/info/rfc6698>

Hodges, J. Jackson, C. A. Barth "HTTP Strict Transport Security (HSTS)"

RFC 6797 DOI 10.17487/RFC6797 <https://www.rfc-editor.org/

info/rfc6797>

Santesson, S. Myers, M. Ankney, R. Malpani, A. Galperin, S. C. Adams "X.

509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"

RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/info/

rfc6960>

Pettersen, Y. "The Transport Layer Security (TLS) Multiple Certificate Status

Request Extension" RFC 6961 DOI 10.17487/RFC6961 <https://

www.rfc-editor.org/info/rfc6961>

Bormann, C. Ersue, M. A. Keranen "Terminology for Constrained-Node

Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-

editor.org/info/rfc7228>

Dukhovni, V. "Opportunistic Security: Some Protection Most of the Time" RFC

7435 DOI 10.17487/RFC7435 <https://www.rfc-editor.org/info/

rfc7435>

Sheffer, Y. Holz, R. P. Saint-Andre "Summarizing Known Attacks on

Transport Layer Security (TLS) and Datagram TLS (DTLS)" RFC 7457 DOI

10.17487/RFC7457 <https://www.rfc-editor.org/info/rfc7457>

Moeller, B. A. Langley "TLS Fallback Signaling Cipher Suite Value (SCSV) for

Preventing Protocol Downgrade Attacks" RFC 7507 DOI 10.17487/RFC7507

<https://www.rfc-editor.org/info/rfc7507>

Sheffer, Y. Holz, R. P. Saint-Andre "Recommendations for Secure Use of

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"

BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-

editor.org/info/rfc7525>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 29

https://www.rfc-editor.org/info/rfc5321
https://www.rfc-editor.org/info/rfc6101
https://www.rfc-editor.org/info/rfc6101
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7457
https://www.rfc-editor.org/info/rfc7507
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525

[RFC7568]

[RFC7590]

[RFC7633]

[RFC7672]

[RFC7673]

[RFC7712]

[RFC7919]

[RFC7924]

[RFC7925]

[RFC8452]

[RFC8461]

[RFC8470]

, , , and ,

, , , June 2015,

.

 and ,

, ,

, June 2015, .

, ,

, , October 2015,

.

 and ,

,

, , October 2015,

.

, , and ,

, ,

, October 2015, .

, , and ,

, ,

, November 2015, .

,

, , , August 2016,

.

 and ,

, , , July 2016,

.

 and ,

, ,

, July 2016, .

, , and ,

, , , April 2019,

.

, , , , and ,

, , ,

September 2018, .

, , and , ,

, , September 2018,

.

Barnes, R. Thomson, M. Pironti, A. A. Langley "Deprecating Secure Sockets

Layer Version 3.0" RFC 7568 DOI 10.17487/RFC7568 <https://

www.rfc-editor.org/info/rfc7568>

Saint-Andre, P. T. Alkemade "Use of Transport Layer Security (TLS) in the

Extensible Messaging and Presence Protocol (XMPP)" RFC 7590 DOI 10.17487/

RFC7590 <https://www.rfc-editor.org/info/rfc7590>

Hallam-Baker, P. "X.509v3 Transport Layer Security (TLS) Feature Extension"

RFC 7633 DOI 10.17487/RFC7633 <https://www.rfc-editor.org/info/

rfc7633>

Dukhovni, V. W. Hardaker "SMTP Security via Opportunistic DNS-Based

Authentication of Named Entities (DANE) Transport Layer Security (TLS)" RFC

7672 DOI 10.17487/RFC7672 <https://www.rfc-editor.org/info/

rfc7672>

Finch, T. Miller, M. P. Saint-Andre "Using DNS-Based Authentication of

Named Entities (DANE) TLSA Records with SRV Records" RFC 7673 DOI

10.17487/RFC7673 <https://www.rfc-editor.org/info/rfc7673>

Saint-Andre, P. Miller, M. P. Hancke "Domain Name Associations (DNA) in

the Extensible Messaging and Presence Protocol (XMPP)" RFC 7712 DOI

10.17487/RFC7712 <https://www.rfc-editor.org/info/rfc7712>

Gillmor, D. "Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for

Transport Layer Security (TLS)" RFC 7919 DOI 10.17487/RFC7919

<https://www.rfc-editor.org/info/rfc7919>

Santesson, S. H. Tschofenig "Transport Layer Security (TLS) Cached

Information Extension" RFC 7924 DOI 10.17487/RFC7924 <https://

www.rfc-editor.org/info/rfc7924>

Tschofenig, H., Ed. T. Fossati "Transport Layer Security (TLS) / Datagram

Transport Layer Security (DTLS) Profiles for the Internet of Things" RFC 7925

DOI 10.17487/RFC7925 <https://www.rfc-editor.org/info/rfc7925>

Gueron, S. Langley, A. Y. Lindell "AES-GCM-SIV: Nonce Misuse-Resistant

Authenticated Encryption" RFC 8452 DOI 10.17487/RFC8452

<https://www.rfc-editor.org/info/rfc8452>

Margolis, D. Risher, M. Ramakrishnan, B. Brotman, A. J. Jones "SMTP MTA

Strict Transport Security (MTA-STS)" RFC 8461 DOI 10.17487/RFC8461

<https://www.rfc-editor.org/info/rfc8461>

Thomson, M. Nottingham, M. W. Tarreau "Using Early Data in HTTP" RFC

8470 DOI 10.17487/RFC8470 <https://www.rfc-editor.org/info/

rfc8470>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 30

https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc7590
https://www.rfc-editor.org/info/rfc7633
https://www.rfc-editor.org/info/rfc7633
https://www.rfc-editor.org/info/rfc7672
https://www.rfc-editor.org/info/rfc7672
https://www.rfc-editor.org/info/rfc7673
https://www.rfc-editor.org/info/rfc7712
https://www.rfc-editor.org/info/rfc7919
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8452
https://www.rfc-editor.org/info/rfc8461
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8470

[RFC8879]

[RFC9000]

[RFC9001]

[RFC9051]

[RFC9110]

[RFC9112]

[RFC9113]

[RFC9162]

[RFC9191]

[SAFECURVES]

[Soghoian2011]

[Springall16]

[STD53]

 and , , ,

, December 2020, .

 and ,

, , , May 2021,

.

 and , , ,

, May 2021, .

 and ,

, , , August 2021,

.

, , and , ,

, , , June 2022,

.

, , and , , ,

, , June 2022,

.

 and , , ,

, June 2022, .

, , and , ,

, , December 2021,

.

, , and ,

, ,

, February 2022, .

 and ,

, December 2014, .

 and ,

, ,

, April 2010, .

, , and ,

,

, , November 2016,

.

Ghedini, A. V. Vasiliev "TLS Certificate Compression" RFC 8879 DOI

10.17487/RFC8879 <https://www.rfc-editor.org/info/rfc8879>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI

10.17487/RFC9001 <https://www.rfc-editor.org/info/rfc9001>

Melnikov, A., Ed. B. Leiba, Ed. "Internet Message Access Protocol (IMAP) -

Version 4rev2" RFC 9051 DOI 10.17487/RFC9051 <https://www.rfc-

editor.org/info/rfc9051>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC

9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/

rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Laurie, B. Messeri, E. R. Stradling "Certificate Transparency Version 2.0"

RFC 9162 DOI 10.17487/RFC9162 <https://www.rfc-editor.org/

info/rfc9162>

Sethi, M. Preuß Mattsson, J. S. Turner "Handling Large Certificates and

Long Certificate Chains in TLS-Based EAP Methods" RFC 9191 DOI 10.17487/

RFC9191 <https://www.rfc-editor.org/info/rfc9191>

Bernstein, D. J. T. Lange "SafeCurves: choosing safe curves for elliptic-

curve cryptography" <https://safecurves.cr.yp.to>

Soghoian, C. S. Stamm "Certified Lies: Detecting and Defeating

Government Interception Attacks Against SSL" SSRN Electronic Journal DOI

10.2139/ssrn.1591033 <https://doi.org/10.2139/ssrn.1591033>

Springall, D. Durumeric, Z. J. Halderman "Measuring the Security Harm of

TLS Crypto Shortcuts" Proceedings of the 2016 Internet Measurement

Conference, pp. 33-47 DOI 10.1145/2987443.2987480 <https://

doi.org/10.1145/2987443.2987480>

 and , , , , May

1996.

Myers, J. M. Rose "Post Office Protocol - Version 3" STD 53 RFC 1939

<https://www.rfc-editor.org/info/std53>

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 31

https://www.rfc-editor.org/info/rfc8879
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9051
https://www.rfc-editor.org/info/rfc9051
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9191
https://safecurves.cr.yp.to
https://doi.org/10.2139/ssrn.1591033
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/2987443.2987480
https://www.rfc-editor.org/info/std53

[Sy2018]

[TLS-ECH]

[Triple-Handshake]

[TWIRL]

, , , and ,

,

, , December

2018, .

, , , and , ,

, , 3 October 2022,

.

, , , , and ,

,

, , May

2014, .

 and , ,

,

, 2004,

.

Sy, E. Burkert, C. Federrath, H. M. Fischer "Tracking Users across the Web

via TLS Session Resumption" Proceedings of the 34th Annual Computer Security

Applications Conference, pp. 289-299 DOI 10.1145/3274694.3274708

<https://doi.org/10.1145/3274694.3274708>

Rescorla, E. Oku, K. Sullivan, N. C. A. Wood "TLS Encrypted Client Hello"

Work in Progress Internet-Draft, draft-ietf-tls-esni-15 <https://

datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15>

Bhargavan, K. Lavaud, A. Fournet, C. Pironti, A. P. Strub "Triple

Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS"

2014 IEEE Symposium on Security and Privacy DOI 10.1109/sp.2014.14

<https://doi.org/10.1109/sp.2014.14>

Shamir, A. E. Tromer "Factoring Large Numbers with the TWIRL Device"

2014 IEEE Symposium on Security and Privacy DOI

10.1007/978-3-540-45146-4_1 <https://cs.tau.ac.il/~tromer/papers/

twirl.pdf>

Appendix A. Differences from RFC 7525

This revision of the Best Current Practices contains numerous changes, and this section is

focused on the normative changes.

High-level differences:

Described the expectations from new TLS-incorporating transport protocols and from new

application protocols layered on TLS.

Clarified items (e.g., renegotiation) that only apply to TLS 1.2.

Changed the status of TLS 1.0 and 1.1 from " " to " ".

Added TLS 1.3 at a " " level.

Made similar changes to DTLS.

Included specific guidance for multiplexed protocols.

-level implementation requirement for ALPN and more specific -level

guidance for ALPN and SNI.

Clarified discussion of strict TLS policies, including -level recommendations.

Limits on key usage.

New attacks since : ALPACA, Raccoon, Logjam, and "Nonce-Disrespecting

Adversaries".

RFC 6961 (OCSP status_request_v2) has been deprecated.

-level requirement for server-side RSA certificates to have a 2048-bit modulus at a

minimum, replacing a " ".

Differences specific to TLS 1.2:

-level guidance on AES-GCM nonce generation.

 use (static or ephemeral) finite-field DH key agreement.

•

◦

◦

◦ SHOULD NOT MUST NOT

◦ SHOULD

◦

◦

◦ MUST SHOULD

◦ MUST

◦

◦ [RFC7457]

◦

◦ MUST

SHOULD

•

◦ SHOULD

◦ SHOULD NOT

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 32

https://doi.org/10.1145/3274694.3274708
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://doi.org/10.1109/sp.2014.14
https://cs.tau.ac.il/~tromer/papers/twirl.pdf
https://cs.tau.ac.il/~tromer/papers/twirl.pdf

 reuse ephemeral finite-field DH keys across multiple connections.

 use static Elliptic Curve DH key exchange.

2048-bit DH is now a " " and ECDH minimal curve size is 224 (vs. 192 previously).

Support for extended_master_secret is now a " " (previously it was a soft

recommendation, as the RFC had not been published at the time). Also removed other,

more complicated, related mitigations.

-level restriction on session ticket validity, replacing a " ".

-level restriction on the TLS session duration, depending on the rotation period of

an ticket key.

Dropped TLS_DHE_RSA_WITH_AES from the recommended ciphers.

Added TLS_ECDHE_ECDSA_WITH_AES to the recommended ciphers.

 use the old MTI cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA.

Recommended curve X25519 alongside NIST P-256.

Differences specific to TLS 1.3:

New TLS 1.3 capabilities: 0-RTT.

Removed capabilities: renegotiation and compression.

Added mention of TLS Encrypted Client Hello, but no recommendation for use until it is

finalized.

-level requirement for forward secrecy in TLS 1.3 session resumption.

Generic -level guidance to avoid 0-RTT unless it is documented for the particular

protocol.

◦ SHOULD NOT

◦ SHOULD NOT

◦ MUST

◦ MUST

◦ MUST SHOULD

◦ SHOULD

[RFC5077]

◦

◦

◦ SHOULD NOT

◦

•

◦

◦

◦

◦ SHOULD

◦ MUST

Acknowledgments

Thanks to , , , , ,

, , , , , ,

, , , , ,

, , , , , ,

, , , , , , ,

, , , , , ,

, , , and for helpful comments and

discussions that have shaped this document.

The authors gratefully acknowledge the contribution of , who was a coauthor of RFC

7525, the previous version of the TLS recommendations.

See RFC 7525 for additional acknowledgments specific to the previous version of the TLS

recommendations.

Alexey Melnikov Alvaro Retana Andrei Popov Ben Kaduk Christian Huitema Corey

Bonnell Cullen Jennings Daniel Kahn Gillmor David Benjamin Eric Rescorla Éric Vyncke

Francesca Palombini Hannes Tschofenig Hubert Kario Ilari Liusvaara John Preuß Mattsson

John R. Levine Julien Élie Lars Eggert Leif Johansson Magnus Westerlund Martin Duke Martin

Thomson Mohit Sahni Nick Sullivan Nimrod Aviram Paul Wouters Peter Gutmann Rich Salz

Robert Sayre Robert Wilton Roman Danyliw Ryan Sleevi Sean Turner Stephen Farrell Tim

Evans Valery Smyslov Viktor Dukhovni Warren Kumari

Ralph Holz

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 33

Authors' Addresses

Yaron Sheffer

Intuit

 yaronf.ietf@gmail.com Email:

Peter Saint-Andre

Independent

 stpeter@stpeter.im Email:

Thomas Fossati

ARM Limited

 thomas.fossati@arm.com Email:

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 34

mailto:yaronf.ietf@gmail.com
mailto:stpeter@stpeter.im
mailto:thomas.fossati@arm.com

	RFC 9325
	Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. General Recommendations
	3.1. Protocol Versions
	3.1.1. SSL/TLS Protocol Versions
	3.1.2. DTLS Protocol Versions
	3.1.3. Fallback to Lower Versions

	3.2. Strict TLS
	3.3. Compression
	3.3.1. Certificate Compression

	3.4. TLS Session Resumption
	3.5. Renegotiation in TLS 1.2
	3.6. Post-Handshake Authentication
	3.7. Server Name Indication (SNI)
	3.8. Application-Layer Protocol Negotiation (ALPN)
	3.9. Multi-Server Deployment
	3.10. Zero Round-Trip Time (0-RTT) Data in TLS 1.3

	4. Recommendations: Cipher Suites
	4.1. General Guidelines
	4.2. Cipher Suites for TLS 1.2
	4.2.1. Implementation Details

	4.3. Cipher Suites for TLS 1.3
	4.4. Limits on Key Usage
	4.5. Public Key Length
	4.6. Truncated HMAC

	5. Applicability Statement
	5.1. Security Services
	5.2. Opportunistic Security

	6. IANA Considerations
	7. Security Considerations
	7.1. Host Name Validation
	7.2. AES-GCM
	7.2.1. Nonce Reuse in TLS 1.2

	7.3. Forward Secrecy
	7.4. Diffie-Hellman Exponent Reuse
	7.5. Certificate Revocation

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Differences from RFC 7525
	Acknowledgments
	Authors' Addresses

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Intuit

 yaronf.ietf@gmail.com

 Independent

 stpeter@stpeter.im

 ARM Limited

 thomas.fossati@arm.com

 Applications
 UTA

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
 RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.

 Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further information
 on BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . General Recommendations

 . Protocol Versions

 . SSL/TLS Protocol Versions

 . DTLS Protocol Versions

 . Fallback to Lower Versions

 . Strict TLS

 . Compression

 . Certificate Compression

 . TLS Session Resumption

 . Renegotiation in TLS 1.2

 . Post-Handshake Authentication

 . Server Name Indication (SNI)

 . Application-Layer Protocol Negotiation (ALPN)

 . Multi-Server Deployment

 . Zero Round-Trip Time (0-RTT) Data in TLS 1.3

 . Recommendations: Cipher Suites

 . General Guidelines

 . Cipher Suites for TLS 1.2

 . Implementation Details

 . Cipher Suites for TLS 1.3

 . Limits on Key Usage

 . Public Key Length

 . Truncated HMAC

 . Applicability Statement

 . Security Services

 . Opportunistic Security

 . IANA Considerations

 . Security Considerations

 . Host Name Validation

 . AES-GCM

 . Nonce Reuse in TLS 1.2

 . Forward Secrecy

 . Diffie-Hellman Exponent Reuse

 . Certificate Revocation

 . References

 . Normative References

 . Informative References

 . Differences from RFC 7525

 Acknowledgments

 Authors' Addresses

 Introduction
 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide variety of application protocols, including HTTP , IMAP , Post Office Protocol (POP) , SIP , SMTP , and the Extensible Messaging and Presence Protocol (XMPP) . Such protocols use both the TLS or DTLS handshake protocol and the TLS or DTLS record layer.

 Although the TLS handshake protocol can also be used with different record layers to define secure transport protocols (the most prominent example is QUIC), such transport protocols are not directly in scope for this document; nevertheless, many of the recommendations here might apply insofar as such protocols use the TLS handshake protocol.
 Over the years leading to 2015, the industry had witnessed serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. For instance, both the AES-CBC and RC4 encryption algorithms, which together were once the most widely deployed ciphers, were attacked in the context of TLS. Detailed information about the attacks known prior to 2015 is provided in a companion document to the previous version of the TLS recommendations , which will help the reader understand the rationale behind the recommendations provided here. That document has not been updated in concert with this one; instead, newer attacks are described in this document, as are mitigations for those attacks.
 The TLS community reacted to the attacks described in in several ways:

 Detailed guidance was published on the use of TLS 1.2 and DTLS 1.2 along with earlier protocol versions. This guidance is included in the original and mostly retained in this revised version; note that this guidance was mostly adopted by the industry since the publication of RFC 7525 in 2015.
 Versions of TLS earlier than 1.2 were deprecated .
 Version 1.3 of TLS was released, followed by version 1.3 of DTLS ; these versions largely mitigate or resolve the described attacks.

 Those who implement and deploy TLS and TLS-based protocols need guidance on how they can be used securely. This document provides guidance for deployed services as well as for software implementations, assuming the implementer expects their code to be deployed in the environments defined in . Concerning deployment, this document targets a wide audience, namely all deployers who wish to add authentication (be it one-way only or mutual), confidentiality, and data integrity protection to their communications.
 The recommendations herein take into consideration the security of various mechanisms, their technical maturity and interoperability, and their prevalence in implementations at the time of writing. Unless it is explicitly called out that a recommendation applies to TLS alone or to DTLS alone, each recommendation applies to both TLS and DTLS.
 This document attempts to minimize new guidance to TLS 1.2 implementations, and the overall approach is to encourage systems to move to TLS 1.3. However, this is not always practical. Newly discovered attacks, as well as ecosystem changes, necessitated some new requirements that apply to TLS 1.2 environments. Those are summarized in .
 Naturally, future attacks are likely, and this document cannot address them. Those who implement and deploy TLS/DTLS and protocols based on TLS/DTLS are strongly advised to pay attention to future developments. In particular, although it is known that the creation of quantum computers will have a significant impact on the security of cryptographic primitives and the technologies that use them, currently post-quantum cryptography is a work in progress and it is too early to make recommendations; once the relevant specifications are standardized in the IETF or elsewhere, this document should be updated to reflect best practices at that time.
 As noted, the TLS 1.3 specification resolves many of the vulnerabilities listed in this document. A system that deploys TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below. Therefore, this document replaces , with an explicit goal to encourage migration of most uses of TLS 1.2 to TLS 1.3.
 These are minimum recommendations for the use of TLS in the vast majority of implementation and deployment scenarios, with the exception of unauthenticated TLS (see). Other specifications that reference this document can have stricter requirements related to one or more aspects of the protocol, based on their particular circumstances (e.g., for use with a specific application protocol); when that is the case, implementers are advised to adhere to those stricter requirements. Furthermore, this document provides a floor, not a ceiling: where feasible, administrators of services are encouraged to go beyond the minimum support available in implementations to provide the strongest security possible. For example, based on knowledge about the deployed base for an existing application protocol and a cost-benefit analysis regarding security strength vs. interoperability, a given service provider might decide to disable TLS 1.2 entirely and offer only TLS 1.3.
 Community knowledge about the strength of various algorithms and feasible attacks can change quickly, and experience shows that a Best Current Practice (BCP) document about security is a point-in-time statement. Readers are advised to seek out any errata or updates that apply to this document.
 This document updates in view of the attack. See for the details.
 This document updates in view of the attack. See for the details.

 Terminology
 A number of security-related terms in this document are used in the sense defined in ,
including "attack", "authentication", "certificate", "cipher", "compromise", "confidentiality",
"credential", "data integrity", "encryption", "forward secrecy", "key", "key length", "self-signed certificate",
"strength", and "strong".
 The key words " MUST", " MUST NOT",
" REQUIRED", " SHALL", " SHALL NOT",
" SHOULD", " SHOULD NOT",
" RECOMMENDED", " NOT RECOMMENDED",
" MAY", and " OPTIONAL" in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all capitals, as shown
here.

 General Recommendations
 This section provides general recommendations on the secure use of TLS. Recommendations related to cipher suites are discussed in the following section.

 Protocol Versions

 SSL/TLS Protocol Versions
 It is important both to stop using old, less secure versions of SSL/TLS and to start using modern, more secure versions; therefore, the following are the recommendations concerning TLS/SSL protocol versions:

 Implementations MUST NOT negotiate SSL version 2.

Rationale: Today, SSLv2 is considered insecure .

 Implementations MUST NOT negotiate SSL version 3.

Rationale: SSLv3 was an improvement over SSLv2 and plugged some significant security holes but did not support strong cipher suites. SSLv3 does not support TLS extensions, some of which (e.g., renegotiation_info) are security critical. In addition, with the emergence of the Padding Oracle On Downgraded Legacy Encryption (POODLE) attack , SSLv3 is now widely recognized as fundamentally insecure. See for further details.

 Implementations MUST NOT negotiate TLS version 1.0 .

Rationale: TLS 1.0 (published in 1999) does not support many modern, strong cipher suites. In addition, TLS 1.0 lacks a per-record Initialization Vector (IV) for cipher suites based on cipher block chaining (CBC) and does not warn against common padding errors. This and other recommendations in this section are in line with .

 Implementations MUST NOT negotiate TLS version 1.1 .

Rationale: TLS 1.1 (published in 2006) is a security improvement over TLS 1.0 but still does not support certain stronger cipher suites that were introduced with the standardization of TLS 1.2 in 2008, including the cipher suites recommended for TLS 1.2 by this document (see below).

 Implementations MUST support TLS 1.2 .

Rationale: TLS 1.2 is implemented and deployed more widely than TLS 1.3 at this time, and when the recommendations in this document are followed to mitigate known attacks, the use of TLS 1.2 is as safe as the use of TLS 1.3. In most application protocols that reuse TLS and DTLS, there is no immediate need to migrate solely to TLS 1.3. Indeed, because many application clients are dependent on TLS libraries or operating systems that do not yet support TLS 1.3, proactively deprecating TLS 1.2 would introduce significant interoperability issues, thus harming security more than helping it. Nevertheless, it is expected that a future version of this BCP will deprecate the use of TLS 1.2 when it is appropriate to do so.

 Implementations SHOULD support TLS 1.3 and, if implemented, MUST prefer to negotiate TLS 1.3 over earlier versions of TLS.

Rationale: TLS 1.3 is a major overhaul to the protocol and resolves many of the security issues with TLS 1.2. To the extent that an implementation supports TLS 1.2 (even if it defaults to TLS 1.3), it MUST follow the recommendations regarding TLS 1.2 specified in this document.

 New transport protocols that integrate the TLS/DTLS handshake protocol and/or record layer MUST use only TLS/DTLS 1.3 (for instance, QUIC took this approach). New application protocols that employ TLS/DTLS for channel or session encryption MUST integrate with both TLS/DTLS versions 1.2 and 1.3; nevertheless, in rare cases where broad interoperability is not a concern, application protocol designers MAY choose to forego TLS 1.2.

Rationale: Secure deployment of TLS 1.3 is significantly easier and less error prone than secure deployment of TLS 1.2. When designing a new secure transport protocol such as QUIC, there is no reason to support TLS 1.2. By contrast, new application protocols that reuse TLS need to support both TLS 1.3 and TLS 1.2 in order to take advantage of underlying library or operating system support for both versions.

 This BCP applies to TLS 1.3, TLS 1.2, and earlier versions. It is not safe for readers to assume that the recommendations in this BCP apply to any future version of TLS.

 DTLS Protocol Versions
 DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS 1.1 was published. The following are the recommendations with respect to DTLS:

 Implementations MUST NOT negotiate DTLS version 1.0 .

Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).

 Implementations MUST support DTLS 1.2 .

Version 1.2 of DTLS correlates to version 1.2 of TLS (see above).
(There is no version 1.1 of DTLS.)

 Implementations SHOULD support DTLS 1.3 and, if implemented, MUST prefer to negotiate DTLS version 1.3 over earlier versions of DTLS.

Version 1.3 of DTLS correlates to version 1.3 of TLS (see above).

 Fallback to Lower Versions
 TLS/DTLS 1.2 clients MUST NOT fall back to earlier TLS versions, since those versions have been deprecated . As a result, the downgrade-protection Signaling Cipher Suite Value (SCSV) mechanism is no longer needed for clients. In addition, TLS 1.3 implements a new version-negotiation mechanism.

 Strict TLS
 The following recommendations are provided to help prevent "SSL Stripping" and STARTTLS command injection (attacks that are summarized in):

 Many existing application protocols were designed before the use of TLS became common. These protocols typically support TLS in one of two ways: either via a separate port for TLS-only communication (e.g., port 443 for HTTPS) or via a method for dynamically upgrading a channel from unencrypted to TLS protected (e.g., STARTTLS, which is used in protocols such as IMAP and XMPP). Regardless of the mechanism for protecting the communication channel (TLS-only port or dynamic upgrade), what matters is the end state of the channel. When a protocol defines both a dynamic upgrade method and a separate TLS-only method, then the separate TLS-only method MUST be supported by implementations and MUST be configured by administrators to be used in preference to the dynamic upgrade method. When a protocol supports only a dynamic upgrade method, implementations MUST provide a way for administrators to set a strict local policy that forbids use of plaintext in the absence of a negotiated TLS channel, and administrators MUST use this policy.
 HTTP client and server implementations intended for use in the World Wide Web (see
) MUST support the HTTP Strict Transport Security (HSTS) header
field so that web servers can advertise that they are willing to
accept TLS-only clients. Web servers SHOULD use HSTS to indicate that they are
willing to accept TLS-only clients, unless they are deployed in such a way that
using HSTS would in fact weaken overall security (e.g., it can be problematic to
use HSTS with self-signed certificates, as described in).
Similar technologies exist for non-HTTP application protocols, such as Mail Transfer Agent Strict Transport Security (MTA-STS) for
mail transfer agents and methods based on DNS-Based Authentication of
Named Entities (DANE) for SMTP and XMPP .

 Rationale: Combining unprotected and TLS-protected communication opens the way to SSL Stripping and similar attacks, since an initial part of the communication is not integrity protected and therefore can be manipulated by an attacker whose goal is to keep the communication in the clear.

 Compression
 In order to help prevent compression-related attacks (summarized in) when using TLS 1.2, implementations and deployments SHOULD NOT support
TLS-level compression (); the only exception is when
the application protocol in question has been proven not to be open to such attacks.
However, even in this case, extreme caution is warranted because of the potential for
	future attacks related to TLS compression. More specifically, the HTTP protocol is known to be vulnerable to compression-related attacks. (This recommendation applies to TLS 1.2 only, because compression has been removed from TLS 1.3.)
 Rationale: TLS compression has been subject to security attacks such as the Compression Ratio Info-leak Made Easy (CRIME) attack.
 Implementers should note that compression at higher protocol levels can allow an active attacker to extract cleartext information from the connection. The Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) attack is one such case. These issues can only be mitigated outside of TLS and are thus outside the scope of this document. See for further details.

 Certificate Compression
 Certificate chains often take up most of the bytes transmitted during
the handshake. In order to manage their size, some or all of the following
methods can be employed (see also for further suggestions):

 Limit the number of names or extensions.
 Use keys with small public key representations, like the Elliptic Curve Digital Signature Algorithm (ECDSA).
 Use certificate compression.

 To achieve the latter, TLS 1.3 defines the compress_certificate extension in
 . See also for security and privacy
considerations associated with its use. For the avoidance of doubt, CRIME-style attacks on TLS
compression do not apply to certificate compression.
 Due to the strong likelihood of middlebox interference,
compression in the style of has not been made available in
TLS 1.2. In theory, the cached_info extension defined in could
be used, but it is not supported widely enough to be considered a practical
alternative.

 TLS Session Resumption
 Session resumption drastically reduces the number of full TLS handshakes and thus is an essential
performance feature for most deployments.
 Stateless session resumption with session tickets is a popular strategy. For TLS 1.2, it is specified in
 . For TLS 1.3, a more secure mechanism based on the use of a pre-shared key (PSK) is described in
 . See for a quantitative study of the risks induced by TLS cryptographic "shortcuts", including session resumption.
 When it is used, the resumption information MUST
be authenticated and encrypted to prevent modification or eavesdropping by an attacker.
Further recommendations apply to session tickets:

 A strong cipher MUST be used when encrypting the ticket (at least as strong as the main TLS cipher suite).
 Ticket-encryption keys MUST be changed regularly, e.g., once every week, so as not to negate the benefits of forward secrecy (see for details on forward secrecy). Old ticket-encryption keys MUST be destroyed at the end of the validity period.
 For similar reasons, session ticket validity MUST be limited to a reasonable duration (e.g., half as long as ticket-encryption key validity).
 TLS 1.2 does not roll the session key forward within a single session. Thus, to prevent an attack where the server's ticket-encryption key is stolen and used to decrypt the entire content of a session (negating the concept of forward secrecy), a TLS 1.2 server SHOULD NOT resume sessions that are too old, e.g., sessions that have been open longer than two ticket-encryption key rotation periods.

 Rationale: Session resumption is another kind of TLS handshake and therefore must be as secure as the initial handshake. This document () recommends the use of cipher suites that provide forward secrecy, i.e., that prevent an attacker who gains momentary access to the TLS endpoint (either client or server) and its secrets from reading either past or future communication. The tickets must be managed so as not to negate this security property.
 TLS 1.3 provides the powerful option of forward secrecy even within a long-lived connection
that is periodically resumed. recommends that clients SHOULD
send a "key_share" when initiating session resumption.
In order to gain forward secrecy, this document recommends that server implementations SHOULD
select the "psk_dhe_ke" PSK key exchange mode and
respond with a "key_share" to complete an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) exchange on each session resumption.
As a more performant alternative, server implementations MAY refrain from responding with a
"key_share" until a certain amount of time (e.g., measured in hours) has passed since the last
ECDHE exchange; this implies that the "key_share" operation would not occur for the presumed
majority of session resumption requests (which would occur within a few hours) while still ensuring
forward secrecy for longer-lived sessions.
 TLS session resumption introduces potential privacy issues where the server is able
to track the client, in some cases indefinitely. See for more details.

 Renegotiation in TLS 1.2
 The recommendations in this section apply to TLS 1.2 only, because renegotiation has been removed from TLS 1.3.
 Renegotiation in TLS 1.2 is a handshake that establishes new cryptographic parameters for an existing session. The mechanism existed in TLS 1.2 and in earlier protocol versions and was improved following several major attacks including a plaintext injection attack, CVE-2009-3555 .
 TLS 1.2 clients and servers MUST implement the renegotiation_info extension, as defined in .
 TLS 1.2 clients MUST send renegotiation_info in the Client Hello. If the server does not acknowledge the extension, the client MUST generate a fatal handshake_failure alert prior to terminating the connection.
 Rationale: It is not safe for a client to connect to a TLS 1.2 server that does not support renegotiation_info regardless of whether either endpoint actually implements renegotiation. See also .
 A related attack resulting from TLS session parameters not being properly authenticated is a Triple Handshake . To address this attack, TLS 1.2 implementations MUST support the extended_master_secret extension defined in .

 Post-Handshake Authentication
 Renegotiation in TLS 1.2 was (partially) replaced in TLS 1.3 by separate post-handshake authentication and key update mechanisms. In the context of protocols that multiplex requests over a single connection (such as HTTP/2), post-handshake authentication has the same problems as TLS 1.2 renegotiation. Multiplexed protocols SHOULD follow the advice provided for HTTP/2 in .

 Server Name Indication (SNI)
 TLS implementations MUST support the Server Name Indication (SNI) extension defined in for those higher-level protocols that would benefit from it, including HTTPS. However, the actual use of SNI in particular circumstances is a matter of local policy. At the time of writing, a technology for encrypting the SNI (called Encrypted Client Hello) is being worked on in the TLS Working Group . Once that method has been standardized and widely implemented, it will likely be appropriate to recommend its usage in a future version of this BCP.
 Rationale: SNI supports deployment of multiple TLS-protected virtual servers on a single
 address, and therefore enables fine-grained security for these virtual servers,
 by allowing each one to have its own certificate. However, SNI also leaks the
 target domain for a given connection; this information leak will be closed by
 use of TLS Encrypted Client Hello once that method has been standardized.
 In order to prevent the attacks described in , a server that does not
recognize the presented server name SHOULD NOT continue the handshake and
instead SHOULD fail with a fatal-level unrecognized_name(112) alert. Note that this
recommendation updates , which stated:
 If the server understood the
ClientHello extension but does not recognize the server name, the server SHOULD
take one of two actions: either abort the handshake by sending a fatal-level
 unrecognized_name(112) alert or continue the handshake.

Clients SHOULD abort the handshake if the server acknowledges the SNI extension but presents a certificate with a different hostname than the one sent by the client.

 Application-Layer Protocol Negotiation (ALPN)
 TLS implementations (both client- and server-side) MUST support the
Application-Layer Protocol Negotiation (ALPN) extension .
 In order to prevent "cross-protocol" attacks resulting from failure to ensure
that a message intended for use in one protocol cannot be mistaken for a
message for use in another protocol, servers are advised to strictly enforce the
behavior prescribed in :

 In the event that the
server supports no protocols that the client advertises, then the server SHALL
respond with a fatal ' no_application_protocol' alert.

Clients SHOULD
abort the handshake if the server acknowledges the ALPN extension
but does not select a protocol from the client list. Failure to do so can
result in attacks such those described in .
 Protocol developers are strongly encouraged to register an ALPN identifier
for their protocols. This applies both to new protocols and to well-established
protocols; however, because the latter might have a large deployed base,
strict enforcement of ALPN usage may not be feasible when an ALPN
identifier is registered for a well-established protocol.

 Multi-Server Deployment
 Deployments that involve multiple servers or services can increase the size of the attack surface for TLS. Two scenarios are of interest:
 Deployments in which multiple services handle the same domain name via different
protocols (e.g., HTTP and IMAP). In this case, an attacker might be able to direct
a connecting endpoint to the service offering a different protocol and mount a
cross-protocol attack. In a cross-protocol attack, the client and server believe
they are using different protocols, which the attacker might exploit if messages
sent in one protocol are interpreted as messages in the other protocol with
undesirable effects (see for more detailed information about this class
of attacks). To mitigate this threat, service providers SHOULD deploy ALPN (see
). In addition, to the extent possible, they SHOULD ensure that multiple
services handling the same domain name provide equivalent levels of security that are consistent with the recommendations in this document; such measures SHOULD include the handling of configurations across multiple TLS servers and protections against compromise of credentials held by those servers.
 Deployments in which multiple servers providing the same service have different
TLS configurations. In this case, an attacker might be able to direct a connecting
endpoint to a server with a TLS configuration that is more easily exploitable (see
 for more detailed information about this class of attacks). To mitigate
this threat, service providers SHOULD ensure that all servers providing the same
service provide equivalent levels of security that are consistent with the
recommendations in this document.

 Zero Round-Trip Time (0-RTT) Data in TLS 1.3
 The 0-RTT early data feature is new in TLS 1.3. It provides reduced latency
when TLS connections are resumed, at the potential cost of certain security properties.
As a result, it requires special attention from implementers on both
the server and the client side. Typically, this extends to the
TLS library as well as protocol layers above it.
 For HTTP over TLS, refer to for guidance.
 For QUIC on TLS, refer to .
 For other protocols, generic guidance is given in Section and Appendix of .
To paraphrase Appendix , applications MUST avoid this feature unless
an explicit specification exists for the application protocol in question to clarify
when 0-RTT is appropriate and secure. This can take the form of an IETF RFC,
a non-IETF standard, or documentation associated with a non-standard protocol.

 Recommendations: Cipher Suites
 TLS 1.2 provided considerable flexibility in the selection of cipher suites. Unfortunately, the security of some of these cipher suites has degraded over time to the point where some are known to be insecure (this is one reason why TLS 1.3 restricted such flexibility). Incorrectly configuring a server leads to no or reduced security. This section includes recommendations on the selection and negotiation of cipher suites.

 General Guidelines
 Cryptographic algorithms weaken over time as cryptanalysis improves: algorithms that were once considered strong become weak. Consequently, cipher suites using weak algorithms need to be phased out and replaced with more secure cipher suites. This helps to ensure that the desired security properties still hold. SSL/TLS has been in existence for well over 20 years and many of the cipher suites that have been recommended in various versions of SSL/TLS are now considered weak or at least not as strong as desired. Therefore, this section modernizes the recommendations concerning cipher suite selection.

 Implementations MUST NOT negotiate the cipher suites with NULL encryption.

Rationale: The NULL cipher suites do not encrypt traffic and
 so provide no confidentiality services. Any entity in the
 network with access to the connection can view the plaintext
 of contents being exchanged by the client and server. Nevertheless, this document does not discourage software from
 implementing NULL cipher suites, since they can be useful for
 testing and debugging.

 Implementations MUST NOT negotiate RC4 cipher suites.

Rationale: The RC4 stream cipher has a variety of cryptographic
 weaknesses, as documented in .
 Note that DTLS specifically forbids the use of RC4 already.

 Implementations MUST NOT negotiate cipher suites offering less
 than 112 bits of security, including so-called "export-level"
 encryption (which provides 40 or 56 bits of security).

Rationale: Based on , at least 112 bits
 of security is needed. 40-bit and 56-bit security (found in
 so-called "export ciphers") are considered
 insecure today.

 Implementations SHOULD NOT negotiate cipher suites that use
 algorithms offering less than 128 bits of security.

Rationale: Cipher suites that offer 112 or more bits but less than 128 bits
 of security are not considered weak at this time; however, it is
 expected that their useful lifespan is short enough to justify
 supporting stronger cipher suites at this time. 128-bit ciphers
 are expected to remain secure for at least several years and
 256-bit ciphers until the next fundamental technology
 breakthrough. Note that, because of so-called
 "meet-in-the-middle" attacks ,
 some legacy cipher suites (e.g., 168-bit Triple DES (3DES)) have an effective
 key length that is smaller than their nominal key length (112
 bits in the case of 3DES). Such cipher suites should be
 evaluated according to their effective key length.

 Implementations SHOULD NOT negotiate cipher suites based on
 RSA key transport, a.k.a. "static RSA".

Rationale: These cipher suites, which have assigned values starting
 with the string "TLS_RSA_WITH_*", have several drawbacks, especially
 the fact that they do not support forward secrecy.

 Implementations SHOULD NOT negotiate cipher suites based on
 non-ephemeral (static) finite-field Diffie-Hellman (DH) key agreement. Similarly, implementations SHOULD NOT negotiate non-ephemeral Elliptic Curve DH key agreement.

Rationale: The former cipher suites, which have assigned values prefixed by "TLS_DH_*", have several drawbacks, especially
 the fact that they do not support forward secrecy. The latter ("TLS_ECDH_*") also lack forward secrecy and are subject to invalid curve attacks .

 Implementations MUST support and prefer to negotiate cipher suites
 offering forward secrecy. However, TLS 1.2 implementations SHOULD NOT negotiate
 cipher suites based on ephemeral finite-field Diffie-Hellman key
 agreement (i.e., "TLS_DHE_*" suites). This is justified by the known fragility
 of the construction (see) and the limitation around
 negotiation, including using , which has seen very
 limited uptake.

Rationale: Forward secrecy (sometimes called "perfect forward
 secrecy") prevents the recovery of information that was encrypted
 with older session keys, thus limiting how far back in time data
 can be decrypted when an attack is successful. See Sections
 and for a detailed discussion.

 Cipher Suites for TLS 1.2
 Given the foregoing considerations, implementation and deployment of the following cipher suites is RECOMMENDED:

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 As these are Authenticated Encryption with Associated Data (AEAD) algorithms , these cipher suites are supported only in TLS 1.2 and not in earlier protocol versions.
 Typically, to prefer these suites, the order of suites needs to be explicitly configured in server software. It would be ideal if server software implementations were to prefer these suites by default.
 Some devices have hardware support for AES Counter Mode with CBC-MAC (AES-CCM) but not AES Galois/Counter Mode (AES-GCM), so they are unable to follow the foregoing recommendations regarding cipher suites. There are even devices that do not support public key cryptography at all, but these are out of scope entirely.
 A cipher suite that operates in CBC (cipher block chaining) mode (e.g.,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256) SHOULD NOT be used unless the
 encrypt_then_mac extension is also successfully negotiated.
This requirement applies to both client and server implementations.
 When using ECDSA signatures for authentication of TLS peers, it is RECOMMENDED that implementations use the NIST curve P-256. In addition, to avoid predictable or repeated nonces (which could reveal the long-term signing key), it is RECOMMENDED that implementations implement "deterministic ECDSA" as specified in and in line with the recommendations in .
 Note that implementations of "deterministic ECDSA" may be vulnerable to certain
side-channel and fault injection attacks precisely because of their
determinism. While most fault injection attacks described in the literature assume
physical access to the device (and therefore are more relevant in Internet of Things (IoT)
deployments with poor or non-existent physical security), some can be carried
out remotely , e.g., as Rowhammer variants. In
deployments where side-channel attacks and fault injection attacks are a
concern, implementation strategies combining both randomness and determinism
(for example, as described in) can
be used to avoid the risk of successful extraction of the signing key.

 Implementation Details
 Clients SHOULD include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the first proposal to any server. Servers MUST prefer this cipher suite over weaker cipher suites whenever it is proposed, even if it is not the first proposal. Clients are of course free to offer stronger cipher suites, e.g., using AES-256; when they do, the server SHOULD prefer the stronger cipher suite unless there are compelling reasons (e.g., seriously degraded performance) to choose otherwise.
 The previous version of the TLS recommendations implicitly allowed the old RFC 5246 mandatory-to-implement cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. At the time of writing, this cipher suite does not provide additional interoperability, except with very old clients. As with other cipher suites that do not provide forward secrecy, implementations SHOULD NOT support this cipher suite. Other application protocols specify other cipher suites as mandatory to implement (MTI).
 allows clients and servers to negotiate ECDH parameters (curves). Both clients and servers SHOULD include the "Supported Elliptic Curves Extension" . Clients and servers SHOULD support the NIST P‑256 (secp256r1) and X25519 (x25519) curves. Note that deprecates all but the uncompressed point format. Therefore, if the client sends an ec_point_formats extension, the ECPointFormatList MUST contain a single element, "uncompressed".

 Cipher Suites for TLS 1.3
 This document does not specify any cipher suites for TLS 1.3. Readers
are referred to for cipher suite recommendations.

 Limits on Key Usage
 All ciphers have an upper limit on the amount of traffic that can be securely
protected with any given key. In the case of AEAD cipher suites, two separate
limits are maintained for each key:
 Confidentiality limit (CL), i.e., the number of records that can be
encrypted.
 Integrity limit (IL), i.e., the number of records that are allowed to fail
authentication.

 The latter applies to DTLS (and also to QUIC) but not to TLS itself, since TLS connections are torn down on the
first decryption failure.
 When a sender is approaching CL, the implementation SHOULD initiate a new handshake (in TLS 1.3, this can be achieved by sending a KeyUpdate message on the established session) to rotate the session key. When a receiver has reached IL, the implementation SHOULD close the connection. Although these recommendations are a best practice, implementers need to be aware that it is not always easy to accomplish them in protocols that are built on top of TLS/DTLS without introducing coordination across layer boundaries. See for an example of the cooperation that was necessary in QUIC between the crypto and transport layers to support key updates. Note that in general, application protocols might not be able to emulate that method given their more constrained interaction with TLS/DTLS. As a result of these complexities, these recommendations are not mandatory.
 For all TLS 1.3 cipher suites, readers are referred to for the values of CL and IL. For all DTLS 1.3 cipher suites, readers are referred to .
 For all AES-GCM cipher suites recommended for TLS 1.2 and DTLS 1.2 in this
document, CL can be derived by plugging the corresponding parameters into the
inequalities in that apply to
random, partially implicit nonces, i.e., the nonce construction used in TLS
1.2. Although the obtained figures are slightly higher than those for TLS 1.3,
it is RECOMMENDED that the same limit of 2 24.5 records is used for
both versions.
 For all AES-GCM cipher suites recommended for DTLS 1.2, IL (obtained from the
same inequalities referenced above) is 2 28.

 Public Key Length
 When using the cipher suites recommended in this document, two public keys are
 normally used in the TLS handshake: one for the Diffie-Hellman key agreement
 and one for server authentication. Where a client certificate is used, a third
 public key is added.
 With a key exchange based on modular exponential (MODP) Diffie-Hellman groups ("DHE" cipher suites), DH key lengths of at least 2048 bits are REQUIRED.
 Rationale: For various reasons, in practice, DH keys are typically generated in lengths
 that are powers of two (e.g., 2 10 = 1024 bits, 2 11 = 2048 bits, 2 12 = 4096 bits).
 Because a DH key of 1228 bits would be roughly equivalent to only an 80-bit symmetric key
 , it is better to use keys longer than that for the "DHE" family of cipher suites.
A DH key of 1926 bits would be roughly equivalent to a 100-bit symmetric key .
A DH key of 2048 bits (equivalent to a 112-bit symmetric key)
is the minimum allowed by the latest revision of as of this writing
(see in particular Appendix D of that document).
 As noted in , correcting for the emergence of The Weizmann Institute Relation Locator (TWIRL) machine would imply that 1024-bit DH keys yield about 61 bits of equivalent strength and that a 2048-bit DH key would yield about 92 bits of equivalent strength.
The Logjam attack further demonstrates that 1024-bit Diffie-Hellman parameters
should be avoided.
 With regard to ECDH keys, implementers are referred to the IANA "TLS Supported Groups" registry (formerly known as the "EC Named Curve
Registry") within the
 "Transport Layer Security (TLS) Parameters" registry and in particular to the "recommended"
 groups. Curves of less than 224 bits MUST NOT be used. This recommendation is in line with the latest
revision of .
 When using RSA, servers MUST authenticate using certificates with at least a 2048-bit modulus for the public key. In addition, the use of the SHA-256 hash algorithm is RECOMMENDED and SHA-1 or MD5 MUST NOT be used (for more details, see also , for which the current version at the time of writing is 1.8.4). Clients MUST indicate to servers that they request SHA-256 by using the "Signature Algorithms" extension defined in TLS 1.2. For TLS 1.3, the same requirement is already specified by .

 Truncated HMAC
 Implementations MUST NOT use the Truncated HMAC Extension, defined in .
 Rationale: The extension does not apply to the AEAD
 cipher suites recommended above. However, it does apply to most other TLS cipher suites. Its use
 has been shown to be insecure in .

 Applicability Statement
 The recommendations of this document primarily apply to the implementation and deployment of application protocols that are most commonly used with TLS and DTLS on the Internet today. Examples include, but are not limited to:

 Web software and services that wish to protect HTTP traffic with TLS.
 Email software and services that wish to protect IMAP, Post Office Protocol version 3 (POP3), or SMTP traffic with TLS.
 Instant-messaging software and services that wish to protect Extensible Messaging and Presence Protocol (XMPP) or Internet Relay Chat (IRC) traffic with TLS.
 Realtime media software and services that wish to protect Secure Realtime Transport Protocol (SRTP) traffic with DTLS.

 This document does not modify the implementation and deployment recommendations (e.g., mandatory-to-implement cipher suites) prescribed by existing application protocols that employ TLS or DTLS. If the community that uses such an application protocol wishes to modernize its usage of TLS or DTLS to be consistent with the best practices recommended here, it needs to explicitly update the existing application protocol definition (one example is , which updates).
 Designers of new application protocols developed through the Internet
 Standards Process are expected at minimum to conform to the best
 practices recommended here, unless they provide documentation of
 compelling reasons that would prevent such conformance (e.g.,
 widespread deployment on constrained devices that lack support for
 the necessary algorithms).
 Although many of the recommendations provided here might also apply to QUIC insofar
that it uses the TLS 1.3 handshake protocol, QUIC and other such secure transport protocols
are out of scope of this document. For QUIC specifically, readers are
referred to .
 This document does not address the use of TLS in constrained-node networks
 . For recommendations regarding the profiling of TLS and DTLS for
small devices with severe constraints on power, memory, and processing
resources, the reader is referred to and
 .

 Security Services
 This document provides recommendations for an audience that wishes to secure their communication with TLS to achieve the following:

 Confidentiality:

 all application-layer communication is encrypted with the goal
that no party should be able to decrypt it except the intended receiver.

 Data integrity:

 any changes made to the communication in transit are detectable
by the receiver.

 Authentication:

 an endpoint of the TLS communication is authenticated as the
intended entity to communicate with.

 With regard to authentication, TLS enables authentication of one or both endpoints in the communication. In the context of opportunistic security , TLS is sometimes used without authentication. As discussed in , considerations for opportunistic security are not in scope for this document.
 If deployers deviate from the recommendations given in this document, they need to be aware that they might lose access to one of the foregoing security services.
 This document applies only to environments where confidentiality is required. It requires algorithms and configuration options that enforce secrecy of the data in transit.
 This document also assumes that data integrity protection is always one of the goals of a deployment. In cases where integrity is not required, it does not make sense to employ TLS in the first place. There are attacks against confidentiality-only protection that utilize the lack of integrity to also break confidentiality (see, for instance, in the context of IPsec).
 This document addresses itself to application protocols that are most commonly used on the Internet with TLS and DTLS. Typically, all communication between TLS clients and TLS servers requires all three of the above security services. This is particularly true where TLS clients are user agents like web browsers or email clients.
 This document does not address the rarer deployment scenarios where one of the above three properties is not desired, such as the use case described in . As another scenario where confidentiality is not needed, consider a monitored network where the authorities in charge of the respective traffic domain require full access to unencrypted (plaintext) traffic and where users collaborate and send their traffic in the clear.

 Opportunistic Security
 There are several important scenarios in which the use of TLS is optional, i.e., the client decides dynamically ("opportunistically") whether to use TLS with a particular server or to connect in the clear. This practice, often called "opportunistic security", is described at length in and is often motivated by a desire for backward compatibility with legacy deployments.
 In these scenarios, some of the recommendations in this document might be too strict, since adhering to them could cause fallback to cleartext, a worse outcome than using TLS with an outdated protocol version or cipher suite.

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 This entire document discusses the security practices directly affecting applications
 using the TLS protocol. This section contains broader security considerations related
 to technologies used in conjunction with or by TLS.
 The reader is referred to the Security Considerations sections of TLS 1.3
 , DTLS 1.3 , TLS 1.2 , and DTLS 1.2
 for further context.

 Host Name Validation
 Application authors should take note that some TLS implementations
 do not validate host names. If the TLS implementation they are
 using does not validate host names, authors might need to write their
 own validation code or consider using a different TLS implementation.
 It is noted that the requirements regarding host name validation (and, in general, binding between the TLS layer and the protocol that runs above it) vary between different protocols. For HTTPS, these requirements are defined by Sections

 , , and of .
 Host name validation is security-critical for all common TLS use cases. Without it, TLS ensures that the certificate is valid and guarantees possession of the private key but does not ensure that the connection terminates at the desired endpoint. Readers are referred to for further details regarding generic host name validation in the TLS context. In addition, that RFC contains a long list of application protocols, some of which implement a policy very different from HTTPS.
 If the host name is discovered indirectly and insecurely (e.g., by a cleartext DNS query for an SRV or Mail Exchange (MX) record), it SHOULD NOT be used as a reference identifier even when it matches the presented certificate. This proviso does not apply if the host name is discovered securely (for further discussion, see and).
 Host name validation typically applies only to the leaf "end entity" certificate. Naturally, in order to ensure proper authentication in the context of the PKI, application clients need to verify the entire certification path in accordance with .

 AES-GCM
 recommends the use of the AES-GCM authenticated encryption algorithm. Please refer to for security considerations that apply specifically to AES-GCM when used with TLS.

 Nonce Reuse in TLS 1.2
 The existence of deployed TLS stacks that mistakenly reuse the AES-GCM nonce is
documented in , showing there is an actual risk of AES-GCM getting
implemented insecurely and thus making TLS sessions that use an
AES-GCM cipher suite vulnerable to attacks such as . (See
records: CVE-2016-0270, CVE-2016-10213, CVE-2016-10212, and CVE-2017-5933.)
 While this problem has been fixed in TLS 1.3, which enforces a deterministic
method to generate nonces from record sequence numbers and shared secrets for
all its AEAD cipher suites (including AES-GCM), TLS 1.2 implementations
could still choose their own (potentially insecure) nonce generation methods.
 It is therefore RECOMMENDED that TLS 1.2 implementations use the 64-bit
sequence number to populate the nonce_explicit part of the GCM nonce, as
described in the first two paragraphs of . This stronger recommendation updates , which specifies that the use of 64-bit sequence numbers to populate the nonce_explicit field is optional.
 We note that at the time of writing, there are no cipher suites defined for nonce-reuse-resistant algorithms such as AES-GCM-SIV .

 Forward Secrecy
 Forward secrecy (also called "perfect forward secrecy" or "PFS" and defined in) is a defense against an attacker who records encrypted conversations where the session keys are only encrypted with the communicating parties' long-term keys.
 Should the attacker be able to obtain these long-term keys at some point later in time, the session keys and thus the entire conversation could be decrypted.
 In the context of TLS and DTLS, such compromise of long-term keys is not entirely implausible. It can happen, for example, due to:

 A client or server being attacked by some other attack vector, and the private key retrieved.
 A long-term key retrieved from a device that has been sold or otherwise decommissioned without prior wiping.
 A long-term key used on a device as a default key .
 A key generated by a trusted third party like a CA and later retrieved from it by either extortion or compromise .
 A cryptographic breakthrough or the use of asymmetric keys with insufficient length .
 Social engineering attacks against system administrators.
 Collection of private keys from inadequately protected backups.

 Forward secrecy ensures in such cases that it is not feasible for an attacker to determine the session keys even if the attacker has obtained the long-term keys some time after the conversation. It also protects against an attacker who is in possession of the long-term keys but remains passive during the conversation.
 Forward secrecy is generally achieved by using the Diffie-Hellman scheme to derive session keys. The Diffie-Hellman scheme has both parties maintain private secrets and send parameters over the network as modular powers over certain cyclic groups. The properties of the so-called Discrete Logarithm Problem (DLP) allow the parties to derive the session keys without an eavesdropper being able to do so. There is currently no known attack against DLP if sufficiently large parameters are chosen. A variant of the Diffie-Hellman scheme uses elliptic curves instead of the originally proposed modular arithmetic. Given the current state of the art, Elliptic Curve Diffie-Hellman appears to be more efficient, permits shorter key lengths, and allows less freedom for implementation errors than finite-field Diffie-Hellman.
 Unfortunately, many TLS/DTLS cipher suites were defined that do not feature forward secrecy, e.g., TLS_RSA_WITH_AES_256_CBC_SHA256. This document therefore advocates strict use of forward-secrecy-only ciphers.

 Diffie-Hellman Exponent Reuse
 For performance reasons, it is not uncommon for TLS implementations to reuse Diffie-Hellman and Elliptic Curve Diffie-Hellman exponents across multiple connections. Such reuse can result in major security issues:

 If exponents are reused for too long (in some cases, even as little as a few hours), an attacker who gains access to the host can decrypt previous connections. In other words, exponent reuse negates the effects of forward secrecy.
 TLS implementations that reuse exponents should test the DH public key they receive for group membership, in order to avoid some known attacks. These tests are not standardized in TLS at the time of writing, although general guidance in this area is provided by and available in many protocol implementations.
 Under certain conditions, the use of static finite-field DH keys, or of ephemeral finite-field DH keys that are reused across multiple connections, can lead to timing attacks (such as those described in) on the shared secrets used in Diffie-Hellman key exchange.
 An "invalid curve" attack can be mounted against Elliptic Curve DH if the victim does not verify that the received point lies on the correct curve. If the victim is reusing the DH secrets, the attacker can repeat the probe varying the points to recover the full secret (see and).

 To address these concerns:

 TLS implementations SHOULD NOT use static finite-field DH keys and SHOULD NOT reuse ephemeral finite-field DH keys across multiple connections.
 Server implementations that want to reuse Elliptic Curve DH keys SHOULD either use a "safe curve" (e.g., X25519) or perform the checks described in on the received points.

 Certificate Revocation
 The following considerations and recommendations represent the current state of the art regarding certificate revocation, even though no complete and efficient solution exists for the problem of checking the revocation status of common public key certificates :

 Certificate revocation is an important tool when recovering from attacks on the TLS implementation as well as cases of misissued certificates. TLS implementations MUST implement a strategy to distrust revoked certificates.
 Although Certificate Revocation Lists (CRLs) are the most widely supported mechanism for distributing revocation information, they have known scaling challenges that limit their usefulness, despite workarounds such as partitioned CRLs and delta CRLs. The more modern and the follow-on Let's Revoke build on the availability of Certificate Transparency logs and aggressive compression to allow practical use of the CRL infrastructure, but at the time of writing, neither solution is deployed for client-side revocation processing at scale.
 Proprietary mechanisms that embed revocation lists in the web browser's configuration database cannot scale beyond the few most heavily used web servers.
 The Online Certification Status Protocol (OCSP) in its basic form presents both scaling and privacy issues. In addition, clients typically "soft-fail", meaning that they do not abort the TLS connection if the OCSP server does not respond. (However, this might be a workaround to avoid denial-of-service attacks if an OCSP responder is taken offline.) For a recent survey of the status of OCSP deployment in the web PKI, see .
 The TLS Certificate Status Request extension (), commonly called "OCSP stapling", resolves the operational issues with OCSP. However, it is still ineffective in the presence of an active on-path attacker because the attacker can simply ignore the client's request for a stapled OCSP response.

 defines a certificate extension that indicates that clients must expect stapled OCSP responses for the certificate and must abort the handshake ("hard-fail") if such a response is not available.
 OCSP stapling as used in TLS 1.2 does not extend to intermediate certificates within a certificate chain. The Multiple Certificate Status extension addresses this shortcoming, but it has seen little deployment and had been deprecated by . As a result, although this extension was recommended for TLS 1.2 in , it is no longer recommended by this document.
 TLS 1.3 () allows the association of OCSP information with intermediate certificates by using an extension to the CertificateEntry structure. However, using this facility remains impractical because many certification authorities (CAs) either do not publish OCSP for CA certificates or publish OCSP reports with a lifetime that is too long to be useful.
 Both CRLs and OCSP depend on relatively reliable connectivity to the Internet, which might not be available to certain kinds of nodes. A common example is newly provisioned devices that need to establish a secure connection in order to boot up for the first time.

 For the common use cases of public key certificates in TLS, servers SHOULD support the following as a best practice given the current state of the art and as a foundation for a possible future solution: OCSP and OCSP stapling using the status_request extension defined in . Note that the exact mechanism for embedding the status_request extension differs between TLS 1.2 and 1.3. As a matter of local policy, server operators MAY request that CAs issue must-staple certificates for the server and/or for client authentication, but we recommend reviewing the operational conditions before deciding on this approach.
 The considerations in this section do not apply to scenarios where the DNS-Based
 Authentication of Named Entities (DANE) TLSA resource record is used to signal to a client which certificate a server considers valid and good to use for TLS connections.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Determining Strengths For Public Keys Used For Exchanging Symmetric Keys

 Implementors of systems that use public key cryptography to exchange symmetric keys need to make the public keys resistant to some predetermined level of attack. That level of attack resistance is the strength of the system, and the symmetric keys that are exchanged must be at least as strong as the system strength requirements. The three quantities, system strength, symmetric key strength, and public key strength, must be consistently matched for any network protocol usage. While it is fairly easy to express the system strength requirements in terms of a symmetric key length and to choose a cipher that has a key length equal to or exceeding that requirement, it is harder to choose a public key that has a cryptographic strength meeting a symmetric key strength requirement. This document explains how to determine the length of an asymmetric key as a function of a symmetric key strength requirement. Some rules of thumb for estimating equivalent resistance to large-scale attacks on various algorithms are given. The document also addresses how changing the sizes of the underlying large integers (moduli, group sizes, exponents, and so on) changes the time to use the algorithms for key exchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 AES Galois Counter Mode (GCM) Cipher Suites for TLS

 This memo describes the use of the Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) as a Transport Layer Security (TLS) authenticated encryption operation. GCM provides both confidentiality and data origin authentication, can be efficiently implemented in hardware for speeds of 10 gigabits per second and above, and is also well-suited to software implementations. This memo defines TLS cipher suites that use AES-GCM with RSA, DSA, and Diffie-Hellman-based key exchange mechanisms. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Renegotiation Indication Extension

 Secure Socket Layer (SSL) and Transport Layer Security (TLS) renegotiation are vulnerable to an attack in which the attacker forms a TLS connection with the target server, injects content of his choice, and then splices in a new TLS connection from a client. The server treats the client's initial TLS handshake as a renegotiation and thus believes that the initial data transmitted by the attacker is from the same entity as the subsequent client data. This specification defines a TLS extension to cryptographically tie renegotiations to the TLS connections they are being performed over, thus preventing this attack. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Extensions: Extension Definitions

 This document provides specifications for existing TLS extensions. It is a companion document for RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2". The extensions specified are server_name, max_fragment_length, client_certificate_url, trusted_ca_keys, truncated_hmac, and status_request. [STANDARDS-TRACK]

 Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)

 Many application technologies enable secure communication between two entities by means of Internet Public Key Infrastructure Using X.509 (PKIX) certificates in the context of Transport Layer Security (TLS). This document specifies procedures for representing and verifying the identity of application services in such interactions. [STANDARDS-TRACK]

 Prohibiting Secure Sockets Layer (SSL) Version 2.0

 This document requires that when Transport Layer Security (TLS) clients and servers establish connections, they never negotiate the use of Secure Sockets Layer (SSL) version 2.0. This document updates the backward compatibility sections found in the Transport Layer Security (TLS). [STANDARDS-TRACK]

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)

 This document defines a deterministic digital signature generation procedure. Such signatures are compatible with standard Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures and can be processed with unmodified verifiers, which need not be aware of the procedure described therein. Deterministic signatures retain the cryptographic security features associated with digital signatures but can be more easily implemented in various environments, since they do not need access to a source of high-quality randomness.

 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension

 This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.

 Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 This document describes a means of negotiating the use of the encrypt-then-MAC security mechanism in place of the existing MAC-then-encrypt mechanism in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). The MAC-then-encrypt mechanism has been the subject of a number of security vulnerabilities over a period of many years.

 Prohibiting RC4 Cipher Suites

 This document requires that Transport Layer Security (TLS) clients and servers never negotiate the use of RC4 cipher suites when they establish connections. This applies to all TLS versions. This document updates RFCs 5246, 4346, and 2246.

 Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension

 The Transport Layer Security (TLS) master secret is not cryptographically bound to important session parameters such as the server certificate. Consequently, it is possible for an active attacker to set up two sessions, one with a client and another with a server, such that the master secrets on the two sessions are the same. Thereafter, any mechanism that relies on the master secret for authentication, including session resumption, becomes vulnerable to a man-in-the-middle attack, where the attacker can simply forward messages back and forth between the client and server. This specification defines a TLS extension that contextually binds the master secret to a log of the full handshake that computes it, thus preventing such attacks.

 Elliptic Curves for Security

 This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier

 This document describes key exchange algorithms based on Elliptic Curve Cryptography (ECC) for the Transport Layer Security (TLS) protocol. In particular, it specifies the use of Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key agreement in a TLS handshake and the use of the Elliptic Curve Digital Signature Algorithm (ECDSA) and Edwards-curve Digital Signature Algorithm (EdDSA) as authentication mechanisms.
 This document obsoletes RFC 4492.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Deprecating TLS 1.0 and TLS 1.1

 This document formally deprecates Transport Layer Security (TLS) versions 1.0 (RFC 2246) and 1.1 (RFC 4346). Accordingly, those documents have been moved to Historic status. These versions lack support for current and recommended cryptographic algorithms and mechanisms, and various government and industry profiles of applications using TLS now mandate avoiding these old TLS versions. TLS version 1.2 became the recommended version for IETF protocols in 2008 (subsequently being obsoleted by TLS version 1.3 in 2018), providing sufficient time to transition away from older versions. Removing support for older versions from implementations reduces the attack surface, reduces opportunity for misconfiguration, and streamlines library and product maintenance.
 This document also deprecates Datagram TLS (DTLS) version 1.0 (RFC 4347) but not DTLS version 1.2, and there is no DTLS version 1.1.
 This document updates many RFCs that normatively refer to TLS version 1.0 or TLS version 1.1, as described herein. This document also updates the best practices for TLS usage in RFC 7525; hence, it is part of BCP 195.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2

 The MD5 and SHA-1 hashing algorithms are increasingly vulnerable to attack, and this document deprecates their use in TLS 1.2 and DTLS 1.2 digital signatures. However, this document does not deprecate SHA-1 with Hashed Message Authentication Code (HMAC), as used in record protection. This document updates RFC 5246.

 Informative References

 Usage Limits on AEAD Algorithms

 ETH Zurich

 Mozilla

 Cloudflare

 An Authenticated Encryption with Associated Data (AEAD) algorithm
 provides confidentiality and integrity. Excessive use of the same
 key can give an attacker advantages in breaking these properties.
 This document provides simple guidance for users of common AEAD
 functions about how to limit the use of keys in order to bound the
 advantage given to an attacker. It considers limits in both single-
 and multi-key settings.

 Work in Progress

 ALPACA: Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in TLS Authentication

 30th USENIX Security Symposium (USENIX Security 21)

 Validation of Elliptic Curve Public Keys

 Public Key Cryptography - PKC 2003

 Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS

 Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates

 CA/Browser Forum

 Deterministic ECDSA and EdDSA Signatures with Additional Randomness

 Work in Progress

 Is the Web Ready for OCSP Must-Staple?

 Rochester Institute of Technology and Northeastern University

 Northeastern University

 Max Planck Institute for Informatics

 Northeastern University

 University of Maryland

 Duke University and Akamai Technologies

 Northeastern University

 Akamai Technologies

 Cloudflare

 Northeastern University

 Proceedings of the Internet Measurement Conference 2018

 CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers

 2017 IEEE Symposium on Security and Privacy (SP)

 Common Vulnerabilities and Exposures

 MITRE

 Attacking the IPsec Standards in Encryption-only Configurations

 2007 IEEE Symposium on Security and Privacy (SP '07)

 DROWN: Breaking TLS using SSLv2

 25th USENIX Security Symposium (USENIX Security 16)

 Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices

 21st Usenix Security Symposium

 Transport Layer Security (TLS) Parameters

 Internet Assigned Numbers Authority

 TLS/DTLS 1.3 Profiles for the Internet of Things

 Arm Limited

 Arm Limited

 This document is a companion to RFC 7925 and defines TLS/DTLS 1.3
 profiles for Internet of Things devices. It also updates RFC 7925
 with regards to the X.509 certificate profile.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/thomas-fossati/draft-tls13-iot.

 Work in Progress

 Practical Invalid Curve Attacks on TLS-ECDH

 Computer Security -- ESORICS 2015, pp. 407-425

 Authentication Failures in NIST version of GCM

 Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

 Factorization of a 768-Bit RSA Modulus

 Advances in Cryptology - CRYPTO 2010, pp. 333-350

 Let's Revoke: Scalable Global Certificate Revocation

 Proceedings 2020 Network and Distributed System Security Symposium

 Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice

 University of Michigan, Ann Arbor, MI, USA

 INRIA Paris-Rocquencourt, Paris, France

 University of Michigan, Ann Arbor, MI, USA

 INRIA Nancy-Grand Est, CNRS and Université de Lorraine, Nancy, France

 Johns Hopkins University, Baltimore, MD, USA

 University of Michigan, Ann Arbor, MI, USA

 University of Pennsylvania, Philadelphia, PA, USA

 University of Michigan, Ann Arbor, MI, USA

 INRIA Nancy-Grand Est, CNRS and Université de Lorraine, Nancy, France

 University of Pennsylvania, Philadelphia, PA, USA

 University of Michigan, Ann Arbor, MI, USA

 University of Michigan, Ann Arbor, MI, USA

 Microsoft Research, Cambridge, United Kingdom

 INRIA Nancy-Grand Est, CNRS and Université de Lorraine, Nancy, France

 Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 5-17

 On the security of multiple encryption

 Elxsi, Int., Sunnyvale, CA

 Stanford Univ., Stanford, CA

 Communications of the ACM, Vol. 24, Issue 7, pp. 465-467

 Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography

 National Institute of Standards and Technology

 Revision 3

 Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol

 Proceedings of the 17th International conference on The Theory and Application of Cryptology and Information Security, pp. 372-389

 Attacking Deterministic Signature Schemes using Fault Attacks

 Conference: 2018 IEEE European Symposium on Security and Privacy

 SSL 3.0 Protocol Vulnerability and POODLE Attack

 US-CERT

 Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)

 30th USENIX Security Symposium (USENIX Security 21)

 The Internet Standards Process -- Revision 3

 This memo documents the process used by the Internet community for the standardization of protocols and procedures. It defines the stages in the standardization process, the requirements for moving a document between stages and the types of documents used during this process. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The TLS Protocol Version 1.0

 This document specifies Version 1.0 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.

 SIP: Session Initiation Protocol

 This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]

 The AES-CBC Cipher Algorithm and Its Use with IPsec

 This document describes the use of the Advanced Encryption Standard (AES) Cipher Algorithm in Cipher Block Chaining (CBC) Mode, with an explicit Initialization Vector (IV), as a confidentiality mechanism within the context of the IPsec Encapsulating Security Payload (ESP).

 The Transport Layer Security (TLS) Protocol Version 1.1

 This document specifies Version 1.1 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.

 Datagram Transport Layer Security

 This document specifies Version 1.0 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol.

 Internet Security Glossary, Version 2

 This Glossary provides definitions, abbreviations, and explanations of terminology for information system security. The 334 pages of entries offer recommendations to improve the comprehensibility of written material that is generated in the Internet Standards Process (RFC 2026). The recommendations follow the principles that such writing should (a) use the same term or definition whenever the same concept is mentioned; (b) use terms in their plainest, dictionary sense; (c) use terms that are already well-established in open publications; and (d) avoid terms that either favor a particular vendor or favor a particular technology or mechanism over other, competing techniques that already exist or could be developed. This memo provides information for the Internet community.

 Transport Layer Security (TLS) Session Resumption without Server-Side State

 This document describes a mechanism that enables the Transport Layer Security (TLS) server to resume sessions and avoid keeping per-client session state. The TLS server encapsulates the session state into a ticket and forwards it to the client. The client can subsequently resume a session using the obtained ticket. This document obsoletes RFC 4507. [STANDARDS-TRACK]

 An Interface and Algorithms for Authenticated Encryption

 This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms. The interface and registry can be used as an application-independent set of cryptoalgorithm suites. This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 Simple Mail Transfer Protocol

 This document is a specification of the basic protocol for Internet electronic mail transport. It consolidates, updates, and clarifies several previous documents, making all or parts of most of them obsolete. It covers the SMTP extension mechanisms and best practices for the contemporary Internet, but does not provide details about particular extensions. Although SMTP was designed as a mail transport and delivery protocol, this specification also contains information that is important to its use as a "mail submission" protocol for "split-UA" (User Agent) mail reading systems and mobile environments. [STANDARDS-TRACK]

 The Secure Sockets Layer (SSL) Protocol Version 3.0

 This document is published as a historical record of the SSL 3.0 protocol. The original Abstract follows.
 This document specifies version 3.0 of the Secure Sockets Layer (SSL 3.0) protocol, a security protocol that provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. This document defines a Historic Document for the Internet community.

 Extensible Messaging and Presence Protocol (XMPP): Core

 The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities. This document defines XMPP's core protocol methods: setup and teardown of XML streams, channel encryption, authentication, error handling, and communication primitives for messaging, network availability ("presence"), and request-response interactions. This document obsoletes RFC 3920. [STANDARDS-TRACK]

 The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA

 Encrypted communication on the Internet often uses Transport Layer Security (TLS), which depends on third parties to certify the keys used. This document improves on that situation by enabling the administrators of domain names to specify the keys used in that domain's TLS servers. This requires matching improvements in TLS client software, but no change in TLS server software. [STANDARDS-TRACK]

 HTTP Strict Transport Security (HSTS)

 This specification defines a mechanism enabling web sites to declare themselves accessible only via secure connections and/or for users to be able to direct their user agent(s) to interact with given sites only over secure connections. This overall policy is referred to as HTTP Strict Transport Security (HSTS). The policy is declared by web sites via the Strict-Transport-Security HTTP response header field and/or by other means, such as user agent configuration, for example. [STANDARDS-TRACK]

 X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

 This document specifies a protocol useful in determining the current status of a digital certificate without requiring Certificate Revocation Lists (CRLs). Additional mechanisms addressing PKIX operational requirements are specified in separate documents. This document obsoletes RFCs 2560 and 6277. It also updates RFC 5912.

 The Transport Layer Security (TLS) Multiple Certificate Status Request Extension

 This document defines the Transport Layer Security (TLS) Certificate Status Version 2 Extension to allow clients to specify and support several certificate status methods. (The use of the Certificate Status extension is commonly referred to as "OCSP stapling".) Also defined is a new method based on the Online Certificate Status Protocol (OCSP) that servers can use to provide status information about not only the server's own certificate but also the status of intermediate certificates in the chain.

 Terminology for Constrained-Node Networks

 The Internet Protocol Suite is increasingly used on small devices with severe constraints on power, memory, and processing resources, creating constrained-node networks. This document provides a number of basic terms that have been useful in the standardization work for constrained-node networks.

 Opportunistic Security: Some Protection Most of the Time

 This document defines the concept "Opportunistic Security" in the context of communications protocols. Protocol designs based on Opportunistic Security use encryption even when authentication is not available, and use authentication when possible, thereby removing barriers to the widespread use of encryption on the Internet.

 Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)

 Over the last few years, there have been several serious attacks on Transport Layer Security (TLS), including attacks on its most commonly used ciphers and modes of operation. This document summarizes these attacks, with the goal of motivating generic and protocol-specific recommendations on the usage of TLS and Datagram TLS (DTLS).

 TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol Downgrade Attacks

 This document defines a Signaling Cipher Suite Value (SCSV) that prevents protocol downgrade attacks on the Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) protocols. It updates RFCs 2246, 4346, 4347, 5246, and 6347. Server update considerations are included.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.

 Deprecating Secure Sockets Layer Version 3.0

 The Secure Sockets Layer version 3.0 (SSLv3), as specified in RFC 6101, is not sufficiently secure. This document requires that SSLv3 not be used. The replacement versions, in particular, Transport Layer Security (TLS) 1.2 (RFC 5246), are considerably more secure and capable protocols.
 This document updates the backward compatibility section of RFC 5246 and its predecessors to prohibit fallback to SSLv3.

 Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)

 This document provides recommendations for the use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP). This document updates RFC 6120.

 X.509v3 Transport Layer Security (TLS) Feature Extension

 The purpose of the TLS feature extension is to prevent downgrade attacks that are not otherwise prevented by the TLS protocol. In particular, the TLS feature extension may be used to mandate support for revocation checking features in the TLS protocol such as Online Certificate Status Protocol (OCSP) stapling. Informing clients that an OCSP status response will always be stapled permits an immediate failure in the case that the response is not stapled. This in turn prevents a denial-of-service attack that might otherwise be possible.

 SMTP Security via Opportunistic DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)

 This memo describes a downgrade-resistant protocol for SMTP transport security between Message Transfer Agents (MTAs), based on the DNS-Based Authentication of Named Entities (DANE) TLSA DNS record. Adoption of this protocol enables an incremental transition of the Internet email backbone to one using encrypted and authenticated Transport Layer Security (TLS).

 Using DNS-Based Authentication of Named Entities (DANE) TLSA Records with SRV Records

 The DNS-Based Authentication of Named Entities (DANE) specification (RFC 6698) describes how to use TLSA resource records secured by DNSSEC (RFC 4033) to associate a server's connection endpoint with its Transport Layer Security (TLS) certificate (thus enabling administrators of domain names to specify the keys used in that domain's TLS servers). However, application protocols that use SRV records (RFC 2782) to indirectly name the target server connection endpoints for a service domain name cannot apply the rules from RFC 6698. Therefore, this document provides guidelines that enable such protocols to locate and use TLSA records.

 Domain Name Associations (DNA) in the Extensible Messaging and Presence Protocol (XMPP)

 This document improves the security of the Extensible Messaging and Presence Protocol (XMPP) in two ways. First, it specifies how to establish a strong association between a domain name and an XML stream, using the concept of "prooftypes". Second, it describes how to securely delegate a service domain name (e.g., example.com) to a target server hostname (e.g., hosting.example.net); this is especially important in multi-tenanted environments where the same target server hosts a large number of domains.

 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS)

 Traditional finite-field-based Diffie-Hellman (DH) key exchange during the Transport Layer Security (TLS) handshake suffers from a number of security, interoperability, and efficiency shortcomings. These shortcomings arise from lack of clarity about which DH group parameters TLS servers should offer and clients should accept. This document offers a solution to these shortcomings for compatible peers by using a section of the TLS "Supported Groups Registry" (renamed from "EC Named Curve Registry" by this document) to establish common finite field DH parameters with known structure and a mechanism for peers to negotiate support for these groups.
 This document updates TLS versions 1.0 (RFC 2246), 1.1 (RFC 4346), and 1.2 (RFC 5246), as well as the TLS Elliptic Curve Cryptography (ECC) extensions (RFC 4492).

 Transport Layer Security (TLS) Cached Information Extension

 Transport Layer Security (TLS) handshakes often include fairly static information, such as the server certificate and a list of trusted certification authorities (CAs). This information can be of considerable size, particularly if the server certificate is bundled with a complete certificate chain (i.e., the certificates of intermediate CAs up to the root CA).
 This document defines an extension that allows a TLS client to inform a server of cached information, thereby enabling the server to omit already available information.

 Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things

 A common design pattern in Internet of Things (IoT) deployments is the use of a constrained device that collects data via sensors or controls actuators for use in home automation, industrial control systems, smart cities, and other IoT deployments.
 This document defines a Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) 1.2 profile that offers communications security for this data exchange thereby preventing eavesdropping, tampering, and message forgery. The lack of communication security is a common vulnerability in IoT products that can easily be solved by using these well-researched and widely deployed Internet security protocols.

 AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption

 This memo specifies two authenticated encryption algorithms that are nonce misuse resistant -- that is, they do not fail catastrophically if a nonce is repeated.
 This document is the product of the Crypto Forum Research Group.

 SMTP MTA Strict Transport Security (MTA-STS)

 SMTP MTA Strict Transport Security (MTA-STS) is a mechanism enabling mail service providers (SPs) to declare their ability to receive Transport Layer Security (TLS) secure SMTP connections and to specify whether sending SMTP servers should refuse to deliver to MX hosts that do not offer TLS with a trusted server certificate.

 Using Early Data in HTTP

 Using TLS early data creates an exposure to the possibility of a replay attack. This document defines mechanisms that allow clients to communicate with servers about HTTP requests that are sent in early data. Techniques are described that use these mechanisms to mitigate the risk of replay.

 TLS Certificate Compression

 In TLS handshakes, certificate chains often take up the majority of the bytes transmitted.
 This document describes how certificate chains can be compressed to reduce the amount of data transmitted and avoid some round trips.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 Using TLS to Secure QUIC

 This document describes how Transport Layer Security (TLS) is used to secure QUIC.

 Internet Message Access Protocol (IMAP) - Version 4rev2

 The Internet Message Access Protocol Version 4rev2 (IMAP4rev2) allows a client to access and manipulate electronic mail messages on a server. IMAP4rev2 permits manipulation of mailboxes (remote message folders) in a way that is functionally equivalent to local folders. IMAP4rev2 also provides the capability for an offline client to resynchronize with the server.
 IMAP4rev2 includes operations for creating, deleting, and renaming mailboxes; checking for new messages; removing messages permanently; setting and clearing flags; parsing per RFCs 5322, 2045, and 2231; searching; and selective fetching of message attributes, texts, and portions thereof. Messages in IMAP4rev2 are accessed by the use of numbers. These numbers are either message sequence numbers or unique identifiers.
 IMAP4rev2 does not specify a means of posting mail; this function is handled by a mail submission protocol such as the one specified in RFC 6409.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 HTTP/1.1

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document specifies the HTTP/1.1 message syntax, message parsing, connection management, and related security concerns.
 This document obsoletes portions of RFC 7230.

 HTTP/2

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced latency by introducing field compression and allowing multiple concurrent exchanges on the same connection.
 This document obsoletes RFCs 7540 and 8740.

 Certificate Transparency Version 2.0

 This document describes version 2.0 of the Certificate Transparency (CT) protocol for publicly logging the existence of Transport Layer Security (TLS) server certificates as they are issued or observed, in a manner that allows anyone to audit certification authority (CA) activity and notice the issuance of suspect certificates as well as to audit the certificate logs themselves. The intent is that eventually clients would refuse to honor certificates that do not appear in a log, effectively forcing CAs to add all issued certificates to the logs.
 This document obsoletes RFC 6962. It also specifies a new TLS extension that is used to send various CT log artifacts.
 Logs are network services that implement the protocol operations for submissions and queries that are defined in this document.

 Handling Large Certificates and Long Certificate Chains in TLS-Based EAP Methods

 SafeCurves: choosing safe curves for elliptic-curve cryptography

 Certified Lies: Detecting and Defeating Government Interception Attacks Against SSL

 SSRN Electronic Journal

 Measuring the Security Harm of TLS Crypto Shortcuts

 University of Michigan, Ann Arbor, MI, USA

 University of Michigan, Ann Arbor, MI, USA

 University of Michigan, Ann Arbor, MI, USA

 Proceedings of the 2016 Internet Measurement Conference, pp. 33-47

 Post Office Protocol - Version 3

 Tracking Users across the Web via TLS Session Resumption

 University of Hamburg

 University of Hamburg

 University of Hamburg

 University of Hamburg

 Proceedings of the 34th Annual Computer Security Applications Conference, pp. 289-299

 TLS Encrypted Client Hello

 RTFM, Inc.

 Fastly

 Cloudflare

 Cloudflare

 This document describes a mechanism in Transport Layer Security (TLS)
 for encrypting a ClientHello message under a server public key.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/tlswg/draft-ietf-tls-esni
 (https://github.com/tlswg/draft-ietf-tls-esni).

 Work in Progress

 Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS

 2014 IEEE Symposium on Security and Privacy

 Factoring Large Numbers with the TWIRL Device

 2014 IEEE Symposium on Security and Privacy

 Differences from RFC 7525
 This revision of the Best Current Practices contains numerous changes, and this section is focused
on the normative changes.

 High-level differences:

 Described the expectations from new TLS-incorporating transport protocols and from new application protocols layered on TLS.
 Clarified items (e.g., renegotiation) that only apply to TLS 1.2.
 Changed the status of TLS 1.0 and 1.1 from " SHOULD NOT" to " MUST NOT".
 Added TLS 1.3 at a " SHOULD" level.
 Made similar changes to DTLS.
 Included specific guidance for multiplexed protocols.

 MUST-level implementation requirement for ALPN and more specific SHOULD-level guidance for ALPN and SNI.
 Clarified discussion of strict TLS policies, including MUST-level recommendations.
 Limits on key usage.
 New attacks since : ALPACA, Raccoon, Logjam, and "Nonce-Disrespecting Adversaries".
 RFC 6961 (OCSP status_request_v2) has been deprecated.

 MUST-level requirement for server-side RSA certificates to have a 2048-bit modulus at a minimum, replacing a " SHOULD".

 Differences specific to TLS 1.2:

 SHOULD-level guidance on AES-GCM nonce generation.

 SHOULD NOT use (static or ephemeral) finite-field DH key agreement.

 SHOULD NOT reuse ephemeral finite-field DH keys across multiple connections.

 SHOULD NOT use static Elliptic Curve DH key exchange.
 2048-bit DH is now a " MUST" and ECDH minimal curve size is 224 (vs. 192 previously).
 Support for extended_master_secret is now a " MUST" (previously it was a soft recommendation, as the RFC had not been published at the time). Also removed other, more complicated, related mitigations.

 MUST-level restriction on session ticket validity, replacing a " SHOULD".

 SHOULD-level restriction on the TLS session duration, depending on the rotation period of an ticket key.
 Dropped TLS_DHE_RSA_WITH_AES from the recommended ciphers.
 Added TLS_ECDHE_ECDSA_WITH_AES to the recommended ciphers.

 SHOULD NOT use the old MTI cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA.
 Recommended curve X25519 alongside NIST P-256.

 Differences specific to TLS 1.3:

 New TLS 1.3 capabilities: 0-RTT.
 Removed capabilities: renegotiation and compression.
 Added mention of TLS Encrypted Client Hello, but no recommendation for use until it is finalized.

 SHOULD-level requirement for forward secrecy in TLS 1.3 session resumption.
 Generic MUST-level guidance to avoid 0-RTT unless it is documented for the particular protocol.

 Acknowledgments
 Thanks to
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
and
for helpful comments and discussions that have shaped this document.
 The authors gratefully acknowledge the contribution of , who was a coauthor of RFC 7525, the previous version of the TLS recommendations.
 See RFC 7525 for additional acknowledgments specific to the previous version of the TLS recommendations.

 Authors' Addresses

 Intuit

 yaronf.ietf@gmail.com

 Independent

 stpeter@stpeter.im

 ARM Limited

 thomas.fossati@arm.com

