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Abstract

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to

protect data exchanged over a wide range of application protocols and can also form the basis

for secure transport protocols. Over the years, the industry has witnessed several serious attacks

on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of

operation. This document provides the latest recommendations for ensuring the security of

deployed services that use TLS and DTLS. These recommendations are applicable to the majority

of use cases.

RFC 7525, an earlier version of the TLS recommendations, was published when the industry was

transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely

available. This document updates the guidance given the new environment and obsoletes RFC

7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.
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Status of This Memo 

This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is

available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9325
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1. Introduction 

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to

protect data exchanged over a wide variety of application protocols, including HTTP  

, IMAP , Post Office Protocol (POP) , SIP , SMTP ,

and the Extensible Messaging and Presence Protocol (XMPP) . Such protocols use both

the TLS or DTLS handshake protocol and the TLS or DTLS record layer. Although the TLS

[RFC9112]

[RFC9113] [RFC9051] [STD53] [RFC3261] [RFC5321]

[RFC6120]
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handshake protocol can also be used with different record layers to define secure transport

protocols (the most prominent example is QUIC ), such transport protocols are not

directly in scope for this document; nevertheless, many of the recommendations here might

apply insofar as such protocols use the TLS handshake protocol.

Over the years leading to 2015, the industry had witnessed serious attacks on TLS and DTLS,

including attacks on the most commonly used cipher suites and their modes of operation. For

instance, both the AES-CBC  and RC4  encryption algorithms, which together

were once the most widely deployed ciphers, were attacked in the context of TLS. Detailed

information about the attacks known prior to 2015 is provided in a companion document 

 to the previous version of the TLS recommendations , which will help the

reader understand the rationale behind the recommendations provided here. That document has

not been updated in concert with this one; instead, newer attacks are described in this document,

as are mitigations for those attacks.

The TLS community reacted to the attacks described in  in several ways:

Detailed guidance was published on the use of TLS 1.2  and DTLS 1.2 

along with earlier protocol versions. This guidance is included in the original  and

mostly retained in this revised version; note that this guidance was mostly adopted by the

industry since the publication of RFC 7525 in 2015. 

Versions of TLS earlier than 1.2 were deprecated . 

Version 1.3 of TLS  was released, followed by version 1.3 of DTLS ; these

versions largely mitigate or resolve the described attacks. 

Those who implement and deploy TLS and TLS-based protocols need guidance on how they can

be used securely. This document provides guidance for deployed services as well as for software

implementations, assuming the implementer expects their code to be deployed in the

environments defined in Section 5. Concerning deployment, this document targets a wide

audience, namely all deployers who wish to add authentication (be it one-way only or mutual),

confidentiality, and data integrity protection to their communications.

The recommendations herein take into consideration the security of various mechanisms, their

technical maturity and interoperability, and their prevalence in implementations at the time of

writing. Unless it is explicitly called out that a recommendation applies to TLS alone or to DTLS

alone, each recommendation applies to both TLS and DTLS.

This document attempts to minimize new guidance to TLS 1.2 implementations, and the overall

approach is to encourage systems to move to TLS 1.3. However, this is not always practical.

Newly discovered attacks, as well as ecosystem changes, necessitated some new requirements

that apply to TLS 1.2 environments. Those are summarized in Appendix A.

Naturally, future attacks are likely, and this document cannot address them. Those who

implement and deploy TLS/DTLS and protocols based on TLS/DTLS are strongly advised to pay

attention to future developments. In particular, although it is known that the creation of

quantum computers will have a significant impact on the security of cryptographic primitives

[RFC9000]

[RFC3602] [RFC7465]

[RFC7457] [RFC7525]

[RFC7457]

• [RFC5246] [RFC6347]

[RFC7525]

• [RFC8996]

• [RFC8446] [RFC9147]
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and the technologies that use them, currently post-quantum cryptography is a work in progress

and it is too early to make recommendations; once the relevant specifications are standardized

in the IETF or elsewhere, this document should be updated to reflect best practices at that time.

As noted, the TLS 1.3 specification resolves many of the vulnerabilities listed in this document. A

system that deploys TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below. Therefore,

this document replaces , with an explicit goal to encourage migration of most uses of

TLS 1.2 to TLS 1.3.

These are minimum recommendations for the use of TLS in the vast majority of implementation

and deployment scenarios, with the exception of unauthenticated TLS (see Section 5). Other

specifications that reference this document can have stricter requirements related to one or

more aspects of the protocol, based on their particular circumstances (e.g., for use with a specific

application protocol); when that is the case, implementers are advised to adhere to those stricter

requirements. Furthermore, this document provides a floor, not a ceiling: where feasible,

administrators of services are encouraged to go beyond the minimum support available in

implementations to provide the strongest security possible. For example, based on knowledge

about the deployed base for an existing application protocol and a cost-benefit analysis regarding

security strength vs. interoperability, a given service provider might decide to disable TLS 1.2

entirely and offer only TLS 1.3.

Community knowledge about the strength of various algorithms and feasible attacks can change

quickly, and experience shows that a Best Current Practice (BCP) document about security is a

point-in-time statement. Readers are advised to seek out any errata or updates that apply to this

document.

This document updates  in view of the  attack. See Section 7.2.1 for the

details.

This document updates  in view of the  attack. See Section 3.7 for the details.

[RFC7525]

[RFC5288] [Boeck2016]

[RFC6066] [ALPACA]

2. Terminology 

A number of security-related terms in this document are used in the sense defined in ,

including "attack", "authentication", "certificate", "cipher", "compromise", "confidentiality",

"credential", "data integrity", "encryption", "forward secrecy", "key", "key length", "self-signed

certificate", "strength", and "strong".

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

[RFC4949]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. General Recommendations 

This section provides general recommendations on the secure use of TLS. Recommendations

related to cipher suites are discussed in the following section.
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3.1. Protocol Versions 

3.1.1. SSL/TLS Protocol Versions 

It is important both to stop using old, less secure versions of SSL/TLS and to start using modern,

more secure versions; therefore, the following are the recommendations concerning TLS/SSL

protocol versions:

Implementations  negotiate SSL version 2.

Rationale: Today, SSLv2 is considered insecure .

Implementations  negotiate SSL version 3.

Rationale: SSLv3  was an improvement over SSLv2 and plugged some significant

security holes but did not support strong cipher suites. SSLv3 does not support TLS

extensions, some of which (e.g., renegotiation_info ) are security critical. In

addition, with the emergence of the Padding Oracle On Downgraded Legacy Encryption

(POODLE) attack , SSLv3 is now widely recognized as fundamentally insecure. See 

 for further details.

Implementations  negotiate TLS version 1.0 .

Rationale: TLS 1.0 (published in 1999) does not support many modern, strong cipher suites.

In addition, TLS 1.0 lacks a per-record Initialization Vector (IV) for cipher suites based on

cipher block chaining (CBC) and does not warn against common padding errors. This and

other recommendations in this section are in line with .

Implementations  negotiate TLS version 1.1 .

Rationale: TLS 1.1 (published in 2006) is a security improvement over TLS 1.0 but still does

not support certain stronger cipher suites that were introduced with the standardization of

TLS 1.2 in 2008, including the cipher suites recommended for TLS 1.2 by this document (see 

Section 4.2 below).

Implementations  support TLS 1.2 .

Rationale: TLS 1.2 is implemented and deployed more widely than TLS 1.3 at this time, and

when the recommendations in this document are followed to mitigate known attacks, the

use of TLS 1.2 is as safe as the use of TLS 1.3. In most application protocols that reuse TLS

and DTLS, there is no immediate need to migrate solely to TLS 1.3. Indeed, because many

application clients are dependent on TLS libraries or operating systems that do not yet

support TLS 1.3, proactively deprecating TLS 1.2 would introduce significant interoperability

issues, thus harming security more than helping it. Nevertheless, it is expected that a future

version of this BCP will deprecate the use of TLS 1.2 when it is appropriate to do so.

Implementations  support TLS 1.3  and, if implemented,  prefer to

negotiate TLS 1.3 over earlier versions of TLS.

Rationale: TLS 1.3 is a major overhaul to the protocol and resolves many of the security

issues with TLS 1.2. To the extent that an implementation supports TLS 1.2 (even if it defaults

to TLS 1.3), it  follow the recommendations regarding TLS 1.2 specified in this

document.

• MUST NOT

[RFC6176]

• MUST NOT

[RFC6101]

[RFC5746]

[POODLE]

[RFC7568]

• MUST NOT [RFC2246]

[RFC8996]

• MUST NOT [RFC4346]

• MUST [RFC5246]

• SHOULD [RFC8446] MUST

MUST

RFC 9325 TLS/DTLS Recommendations November 2022
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New transport protocols that integrate the TLS/DTLS handshake protocol and/or record layer

 use only TLS/DTLS 1.3 (for instance, QUIC  took this approach). New

application protocols that employ TLS/DTLS for channel or session encryption 

integrate with both TLS/DTLS versions 1.2 and 1.3; nevertheless, in rare cases where broad

interoperability is not a concern, application protocol designers  choose to forego TLS

1.2.

Rationale: Secure deployment of TLS 1.3 is significantly easier and less error prone than

secure deployment of TLS 1.2. When designing a new secure transport protocol such as QUIC,

there is no reason to support TLS 1.2. By contrast, new application protocols that reuse TLS

need to support both TLS 1.3 and TLS 1.2 in order to take advantage of underlying library or

operating system support for both versions.

This BCP applies to TLS 1.3, TLS 1.2, and earlier versions. It is not safe for readers to assume that

the recommendations in this BCP apply to any future version of TLS.

• 

MUST [RFC9001]

MUST

MAY

3.1.2. DTLS Protocol Versions 

DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS 1.1 was published. The

following are the recommendations with respect to DTLS:

Implementations  negotiate DTLS version 1.0 .

Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).

Implementations  support DTLS 1.2 .

Version 1.2 of DTLS correlates to version 1.2 of TLS (see above). (There is no version 1.1 of

DTLS.)

Implementations  support DTLS 1.3  and, if implemented,  prefer to

negotiate DTLS version 1.3 over earlier versions of DTLS.

Version 1.3 of DTLS correlates to version 1.3 of TLS (see above).

• MUST NOT [RFC4347]

• MUST [RFC6347]

• SHOULD [RFC9147] MUST

3.1.3. Fallback to Lower Versions 

TLS/DTLS 1.2 clients  fall back to earlier TLS versions, since those versions have been

deprecated . As a result, the downgrade-protection Signaling Cipher Suite Value (SCSV)

mechanism  is no longer needed for clients. In addition, TLS 1.3 implements a new

version-negotiation mechanism.

MUST NOT

[RFC8996]

[RFC7507]

3.2. Strict TLS 

The following recommendations are provided to help prevent "SSL Stripping" and STARTTLS

command injection (attacks that are summarized in ):

Many existing application protocols were designed before the use of TLS became common.

These protocols typically support TLS in one of two ways: either via a separate port for TLS-

only communication (e.g., port 443 for HTTPS) or via a method for dynamically upgrading a

channel from unencrypted to TLS protected (e.g., STARTTLS, which is used in protocols such

as IMAP and XMPP). Regardless of the mechanism for protecting the communication channel

[RFC7457]

• 
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(TLS-only port or dynamic upgrade), what matters is the end state of the channel. When a

protocol defines both a dynamic upgrade method and a separate TLS-only method, then the

separate TLS-only method  be supported by implementations and  be configured

by administrators to be used in preference to the dynamic upgrade method. When a protocol

supports only a dynamic upgrade method, implementations  provide a way for

administrators to set a strict local policy that forbids use of plaintext in the absence of a

negotiated TLS channel, and administrators  use this policy. 

HTTP client and server implementations intended for use in the World Wide Web (see 

Section 5)  support the HTTP Strict Transport Security (HSTS) header field  so

that web servers can advertise that they are willing to accept TLS-only clients. Web servers 

 use HSTS to indicate that they are willing to accept TLS-only clients, unless they are

deployed in such a way that using HSTS would in fact weaken overall security (e.g., it can be

problematic to use HSTS with self-signed certificates, as described in 

). Similar technologies exist for non-HTTP application protocols, such as Mail

Transfer Agent Strict Transport Security (MTA-STS) for mail transfer agents  and

methods based on DNS-Based Authentication of Named Entities (DANE)  for SMTP 

 and XMPP . 

Rationale: Combining unprotected and TLS-protected communication opens the way to SSL

Stripping and similar attacks, since an initial part of the communication is not integrity protected

and therefore can be manipulated by an attacker whose goal is to keep the communication in the

clear.

MUST MUST

MUST

MUST

• 

MUST [RFC6797]

SHOULD

Section 11.3 of

[RFC6797]

[RFC8461]

[RFC6698]

[RFC7672] [RFC7712]

3.3. Compression 

Rationale: TLS compression has been subject to security attacks such as the Compression Ratio

Info-leak Made Easy (CRIME) attack.

Implementers should note that compression at higher protocol levels can allow an active

attacker to extract cleartext information from the connection. The Browser Reconnaissance and

Exfiltration via Adaptive Compression of Hypertext (BREACH) attack is one such case. These

issues can only be mitigated outside of TLS and are thus outside the scope of this document. See 

 for further details.

In order to help prevent compression-related attacks (summarized in )

when using TLS 1.2, implementations and deployments  support TLS-level

compression ( ); the only exception is when the application protocol in

question has been proven not to be open to such attacks. However, even in this case, extreme

caution is warranted because of the potential for future attacks related to TLS compression. More

specifically, the HTTP protocol is known to be vulnerable to compression-related attacks. (This

recommendation applies to TLS 1.2 only, because compression has been removed from TLS 1.3.)

Section 2.6 of [RFC7457]

SHOULD NOT

Section 6.2.2 of [RFC5246]

Section 2.6 of [RFC7457]
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3.3.1. Certificate Compression 

Certificate chains often take up most of the bytes transmitted during the handshake. In order to

manage their size, some or all of the following methods can be employed (see also 

 for further suggestions):

Limit the number of names or extensions. 

Use keys with small public key representations, like the Elliptic Curve Digital Signature

Algorithm (ECDSA). 

Use certificate compression. 

To achieve the latter, TLS 1.3 defines the compress_certificate extension in . See also

 for security and privacy considerations associated with its use. For the

avoidance of doubt, CRIME-style attacks on TLS compression do not apply to certificate

compression.

Due to the strong likelihood of middlebox interference, compression in the style of  has

not been made available in TLS 1.2. In theory, the cached_info extension defined in 

could be used, but it is not supported widely enough to be considered a practical alternative.

Section 4 of

[RFC9191]

• 

• 

• 

[RFC8879]

Section 5 of [RFC8879]

[RFC8879]

[RFC7924]

3.4. TLS Session Resumption 

Session resumption drastically reduces the number of full TLS handshakes and thus is an

essential performance feature for most deployments.

Stateless session resumption with session tickets is a popular strategy. For TLS 1.2, it is specified

in . For TLS 1.3, a more secure mechanism based on the use of a pre-shared key (PSK) is

described in . See  for a quantitative study of the risks

induced by TLS cryptographic "shortcuts", including session resumption.

When it is used, the resumption information  be authenticated and encrypted to prevent

modification or eavesdropping by an attacker. Further recommendations apply to session tickets:

A strong cipher  be used when encrypting the ticket (at least as strong as the main TLS

cipher suite). 

Ticket-encryption keys  be changed regularly, e.g., once every week, so as not to negate

the benefits of forward secrecy (see Section 7.3 for details on forward secrecy). Old ticket-

encryption keys  be destroyed at the end of the validity period. 

For similar reasons, session ticket validity  be limited to a reasonable duration (e.g.,

half as long as ticket-encryption key validity). 

TLS 1.2 does not roll the session key forward within a single session. Thus, to prevent an

attack where the server's ticket-encryption key is stolen and used to decrypt the entire

content of a session (negating the concept of forward secrecy), a TLS 1.2 server 

resume sessions that are too old, e.g., sessions that have been open longer than two ticket-

encryption key rotation periods. 

[RFC5077]

Section 4.6.1 of [RFC8446] [Springall16]

MUST

• MUST

• MUST

MUST

• MUST

• 

SHOULD NOT
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Rationale: Session resumption is another kind of TLS handshake and therefore must be as secure

as the initial handshake. This document (Section 4) recommends the use of cipher suites that

provide forward secrecy, i.e., that prevent an attacker who gains momentary access to the TLS

endpoint (either client or server) and its secrets from reading either past or future

communication. The tickets must be managed so as not to negate this security property.

TLS 1.3 provides the powerful option of forward secrecy even within a long-lived connection that

is periodically resumed.  recommends that clients  send a

"key_share" when initiating session resumption. In order to gain forward secrecy, this document

recommends that server implementations  select the "psk_dhe_ke" PSK key exchange

mode and respond with a "key_share" to complete an Ephemeral Elliptic Curve Diffie-Hellman

(ECDHE) exchange on each session resumption. As a more performant alternative, server

implementations  refrain from responding with a "key_share" until a certain amount of time

(e.g., measured in hours) has passed since the last ECDHE exchange; this implies that the

"key_share" operation would not occur for the presumed majority of session resumption

requests (which would occur within a few hours) while still ensuring forward secrecy for longer-

lived sessions.

TLS session resumption introduces potential privacy issues where the server is able to track the

client, in some cases indefinitely. See  for more details.

Section 2.2 of [RFC8446] SHOULD

SHOULD

MAY

[Sy2018]

3.5. Renegotiation in TLS 1.2 

The recommendations in this section apply to TLS 1.2 only, because renegotiation has been

removed from TLS 1.3.

Renegotiation in TLS 1.2 is a handshake that establishes new cryptographic parameters for an

existing session. The mechanism existed in TLS 1.2 and in earlier protocol versions and was

improved following several major attacks including a plaintext injection attack, CVE-2009-3555 

.

TLS 1.2 clients and servers  implement the renegotiation_info extension, as defined in 

.

TLS 1.2 clients  send renegotiation_info in the Client Hello. If the server does not

acknowledge the extension, the client  generate a fatal handshake_failure alert prior to

terminating the connection.

Rationale: It is not safe for a client to connect to a TLS 1.2 server that does not support 

renegotiation_info regardless of whether either endpoint actually implements renegotiation.

See also .

A related attack resulting from TLS session parameters not being properly authenticated is a

Triple Handshake . To address this attack, TLS 1.2 implementations 

support the extended_master_secret extension defined in .

[CVE]

MUST

[RFC5746]

MUST

MUST

Section 4.1 of [RFC5746]

[Triple-Handshake] MUST

[RFC7627]
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3.6. Post-Handshake Authentication 

Renegotiation in TLS 1.2 was (partially) replaced in TLS 1.3 by separate post-handshake

authentication and key update mechanisms. In the context of protocols that multiplex requests

over a single connection (such as HTTP/2 ), post-handshake authentication has the

same problems as TLS 1.2 renegotiation. Multiplexed protocols  follow the advice

provided for HTTP/2 in .

[RFC9113]

SHOULD

Section 9.2.3 of [RFC9113]

3.7. Server Name Indication (SNI) 

TLS implementations  support the Server Name Indication (SNI) extension defined in 

 for those higher-level protocols that would benefit from it, including

HTTPS. However, the actual use of SNI in particular circumstances is a matter of local policy. At

the time of writing, a technology for encrypting the SNI (called Encrypted Client Hello) is being

worked on in the TLS Working Group . Once that method has been standardized and

widely implemented, it will likely be appropriate to recommend its usage in a future version of

this BCP.

Rationale: SNI supports deployment of multiple TLS-protected virtual servers on a single address,

and therefore enables fine-grained security for these virtual servers, by allowing each one to

have its own certificate. However, SNI also leaks the target domain for a given connection; this

information leak will be closed by use of TLS Encrypted Client Hello once that method has been

standardized.

In order to prevent the attacks described in , a server that does not recognize the

presented server name  continue the handshake and instead  fail with a

fatal-level unrecognized_name(112) alert. Note that this recommendation updates 

, which stated:

If the server understood the ClientHello extension but does not recognize the server

name, the server  take one of two actions: either abort the handshake by

sending a fatal-level unrecognized_name(112) alert or continue the handshake. 

Clients  abort the handshake if the server acknowledges the SNI extension but presents a

certificate with a different hostname than the one sent by the client.

MUST

Section 3 of [RFC6066]

[TLS-ECH]

[ALPACA]

SHOULD NOT SHOULD

Section 3 of

[RFC6066]

SHOULD

SHOULD

3.8. Application-Layer Protocol Negotiation (ALPN) 

TLS implementations (both client- and server-side)  support the Application-Layer Protocol

Negotiation (ALPN) extension .

In order to prevent "cross-protocol" attacks resulting from failure to ensure that a message

intended for use in one protocol cannot be mistaken for a message for use in another protocol,

servers are advised to strictly enforce the behavior prescribed in :

MUST

[RFC7301]

Section 3.2 of [RFC7301]
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In the event that the server supports no protocols that the client advertises, then the

server  respond with a fatal 'no_application_protocol' alert. 

Clients  abort the handshake if the server acknowledges the ALPN extension but does not

select a protocol from the client list. Failure to do so can result in attacks such those described in 

.

Protocol developers are strongly encouraged to register an ALPN identifier for their protocols.

This applies both to new protocols and to well-established protocols; however, because the latter

might have a large deployed base, strict enforcement of ALPN usage may not be feasible when an

ALPN identifier is registered for a well-established protocol.

SHALL

SHOULD

[ALPACA]

3.9. Multi-Server Deployment 

Deployments that involve multiple servers or services can increase the size of the attack surface

for TLS. Two scenarios are of interest:

Deployments in which multiple services handle the same domain name via different

protocols (e.g., HTTP and IMAP). In this case, an attacker might be able to direct a connecting

endpoint to the service offering a different protocol and mount a cross-protocol attack. In a

cross-protocol attack, the client and server believe they are using different protocols, which

the attacker might exploit if messages sent in one protocol are interpreted as messages in the

other protocol with undesirable effects (see  for more detailed information about

this class of attacks). To mitigate this threat, service providers  deploy ALPN (see 

Section 3.8). In addition, to the extent possible, they  ensure that multiple services

handling the same domain name provide equivalent levels of security that are consistent

with the recommendations in this document; such measures  include the handling of

configurations across multiple TLS servers and protections against compromise of

credentials held by those servers. 

Deployments in which multiple servers providing the same service have different TLS

configurations. In this case, an attacker might be able to direct a connecting endpoint to a

server with a TLS configuration that is more easily exploitable (see  for more

detailed information about this class of attacks). To mitigate this threat, service providers 

 ensure that all servers providing the same service provide equivalent levels of

security that are consistent with the recommendations in this document. 

1. 

[ALPACA]

SHOULD

SHOULD

SHOULD

2. 

[DROWN]

SHOULD

3.10. Zero Round-Trip Time (0-RTT) Data in TLS 1.3 

The 0-RTT early data feature is new in TLS 1.3. It provides reduced latency when TLS connections

are resumed, at the potential cost of certain security properties. As a result, it requires special

attention from implementers on both the server and the client side. Typically, this extends to the

TLS library as well as protocol layers above it.

For HTTP over TLS, refer to  for guidance.[RFC8470]
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For QUIC on TLS, refer to .

For other protocols, generic guidance is given in Section 8 and Appendix E.5 of . To

paraphrase Appendix E.5, applications  avoid this feature unless an explicit specification

exists for the application protocol in question to clarify when 0-RTT is appropriate and secure.

This can take the form of an IETF RFC, a non-IETF standard, or documentation associated with a

non-standard protocol.

Section 9.2 of [RFC9001]

[RFC8446]

MUST

4. Recommendations: Cipher Suites 

TLS 1.2 provided considerable flexibility in the selection of cipher suites. Unfortunately, the

security of some of these cipher suites has degraded over time to the point where some are

known to be insecure (this is one reason why TLS 1.3 restricted such flexibility). Incorrectly

configuring a server leads to no or reduced security. This section includes recommendations on

the selection and negotiation of cipher suites.

4.1. General Guidelines 

Cryptographic algorithms weaken over time as cryptanalysis improves: algorithms that were

once considered strong become weak. Consequently, cipher suites using weak algorithms need to

be phased out and replaced with more secure cipher suites. This helps to ensure that the desired

security properties still hold. SSL/TLS has been in existence for well over 20 years and many of

the cipher suites that have been recommended in various versions of SSL/TLS are now

considered weak or at least not as strong as desired. Therefore, this section modernizes the

recommendations concerning cipher suite selection.

Implementations  negotiate the cipher suites with NULL encryption.

Rationale: The NULL cipher suites do not encrypt traffic and so provide no confidentiality

services. Any entity in the network with access to the connection can view the plaintext of

contents being exchanged by the client and server. Nevertheless, this document does not

discourage software from implementing NULL cipher suites, since they can be useful for

testing and debugging.

Implementations  negotiate RC4 cipher suites.

Rationale: The RC4 stream cipher has a variety of cryptographic weaknesses, as documented

in . Note that DTLS specifically forbids the use of RC4 already.

Implementations  negotiate cipher suites offering less than 112 bits of security,

including so-called "export-level" encryption (which provides 40 or 56 bits of security).

Rationale: Based on , at least 112 bits of security is needed. 40-bit and 56-bit

security (found in so-called "export ciphers") are considered insecure today.

Implementations  negotiate cipher suites that use algorithms offering less than

128 bits of security.

Rationale: Cipher suites that offer 112 or more bits but less than 128 bits of security are not

considered weak at this time; however, it is expected that their useful lifespan is short

enough to justify supporting stronger cipher suites at this time. 128-bit ciphers are expected

• MUST NOT

• MUST NOT

[RFC7465]

• MUST NOT

[RFC3766]

• SHOULD NOT

RFC 9325 TLS/DTLS Recommendations November 2022

Sheffer, et al. Best Current Practice Page 13

https://www.rfc-editor.org/rfc/rfc9001#section-9.2
https://www.rfc-editor.org/rfc/rfc8446#section-8
https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5
https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5


to remain secure for at least several years and 256-bit ciphers until the next fundamental

technology breakthrough. Note that, because of so-called "meet-in-the-middle" attacks 

, some legacy cipher suites (e.g., 168-bit Triple DES (3DES)) have an

effective key length that is smaller than their nominal key length (112 bits in the case of

3DES). Such cipher suites should be evaluated according to their effective key length.

Implementations  negotiate cipher suites based on RSA key transport, a.k.a.

"static RSA".

Rationale: These cipher suites, which have assigned values starting with the string

"TLS_RSA_WITH_*", have several drawbacks, especially the fact that they do not support

forward secrecy.

Implementations  negotiate cipher suites based on non-ephemeral (static) finite-

field Diffie-Hellman (DH) key agreement. Similarly, implementations  negotiate

non-ephemeral Elliptic Curve DH key agreement.

Rationale: The former cipher suites, which have assigned values prefixed by "TLS_DH_*",

have several drawbacks, especially the fact that they do not support forward secrecy. The

latter ("TLS_ECDH_*") also lack forward secrecy and are subject to invalid curve attacks 

.

Implementations  support and prefer to negotiate cipher suites offering forward

secrecy. However, TLS 1.2 implementations  negotiate cipher suites based on

ephemeral finite-field Diffie-Hellman key agreement (i.e., "TLS_DHE_*" suites). This is

justified by the known fragility of the construction (see ) and the limitation

around negotiation, including using , which has seen very limited uptake.

Rationale: Forward secrecy (sometimes called "perfect forward secrecy") prevents the

recovery of information that was encrypted with older session keys, thus limiting how far

back in time data can be decrypted when an attack is successful. See Sections 7.3 and 7.4 for

a detailed discussion.

[Multiple-Encryption]

• SHOULD NOT

• SHOULD NOT

SHOULD NOT

[Jager2015]

• MUST

SHOULD NOT

[RACCOON]

[RFC7919]

4.2. Cipher Suites for TLS 1.2 

Given the foregoing considerations, implementation and deployment of the following cipher

suites is :

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 

As these are Authenticated Encryption with Associated Data (AEAD) algorithms , these

cipher suites are supported only in TLS 1.2 and not in earlier protocol versions.

Typically, to prefer these suites, the order of suites needs to be explicitly configured in server

software. It would be ideal if server software implementations were to prefer these suites by

default.

RECOMMENDED

• 

• 

• 

• 

[RFC5116]
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Some devices have hardware support for AES Counter Mode with CBC-MAC (AES-CCM) but not

AES Galois/Counter Mode (AES-GCM), so they are unable to follow the foregoing

recommendations regarding cipher suites. There are even devices that do not support public key

cryptography at all, but these are out of scope entirely.

A cipher suite that operates in CBC (cipher block chaining) mode (e.g.,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256)  be used unless the 

encrypt_then_mac extension  is also successfully negotiated. This requirement applies

to both client and server implementations.

When using ECDSA signatures for authentication of TLS peers, it is  that

implementations use the NIST curve P-256. In addition, to avoid predictable or repeated nonces

(which could reveal the long-term signing key), it is  that implementations

implement "deterministic ECDSA" as specified in  and in line with the

recommendations in .

Note that implementations of "deterministic ECDSA" may be vulnerable to certain side-channel

and fault injection attacks precisely because of their determinism. While most fault injection

attacks described in the literature assume physical access to the device (and therefore are more

relevant in Internet of Things (IoT) deployments with poor or non-existent physical security),

some can be carried out remotely , e.g., as Rowhammer  variants. In

deployments where side-channel attacks and fault injection attacks are a concern,

implementation strategies combining both randomness and determinism (for example, as

described in ) can be used to avoid the risk of successful extraction of the

signing key.

SHOULD NOT

[RFC7366]

RECOMMENDED

RECOMMENDED

[RFC6979]

[RFC8446]

[Poddebniak2017] [Kim2014]

[CFRG-DET-SIGS]

4.2.1. Implementation Details 

Clients  include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the first proposal to

any server. Servers  prefer this cipher suite over weaker cipher suites whenever it is

proposed, even if it is not the first proposal. Clients are of course free to offer stronger cipher

suites, e.g., using AES-256; when they do, the server  prefer the stronger cipher suite

unless there are compelling reasons (e.g., seriously degraded performance) to choose otherwise.

The previous version of the TLS recommendations  implicitly allowed the old RFC 5246

mandatory-to-implement cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. At the time of writing,

this cipher suite does not provide additional interoperability, except with very old clients. As

with other cipher suites that do not provide forward secrecy, implementations 

support this cipher suite. Other application protocols specify other cipher suites as mandatory to

implement (MTI).

 allows clients and servers to negotiate ECDH parameters (curves). Both clients and

servers  include the "Supported Elliptic Curves Extension" . Clients and servers 

 support the NIST P‑256 (secp256r1)  and X25519 (x25519)  curves.

Note that  deprecates all but the uncompressed point format. Therefore, if the client

sends an ec_point_formats extension, the ECPointFormatList  contain a single element,

"uncompressed".

SHOULD

MUST

SHOULD

[RFC7525]

SHOULD NOT

[RFC8422]

SHOULD [RFC8422]

SHOULD [RFC8422] [RFC7748]

[RFC8422]

MUST
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4.3. Cipher Suites for TLS 1.3 

This document does not specify any cipher suites for TLS 1.3. Readers are referred to 

 for cipher suite recommendations.

Section 9.1

of [RFC8446]

4.4. Limits on Key Usage 

All ciphers have an upper limit on the amount of traffic that can be securely protected with any

given key. In the case of AEAD cipher suites, two separate limits are maintained for each key:

Confidentiality limit (CL), i.e., the number of records that can be encrypted. 

Integrity limit (IL), i.e., the number of records that are allowed to fail authentication. 

The latter applies to DTLS (and also to QUIC) but not to TLS itself, since TLS connections are torn

down on the first decryption failure.

When a sender is approaching CL, the implementation  initiate a new handshake (in TLS

1.3, this can be achieved by sending a KeyUpdate message on the established session) to rotate

the session key. When a receiver has reached IL, the implementation  close the

connection. Although these recommendations are a best practice, implementers need to be

aware that it is not always easy to accomplish them in protocols that are built on top of TLS/DTLS

without introducing coordination across layer boundaries. See  for an

example of the cooperation that was necessary in QUIC between the crypto and transport layers

to support key updates. Note that in general, application protocols might not be able to emulate

that method given their more constrained interaction with TLS/DTLS. As a result of these

complexities, these recommendations are not mandatory.

For all TLS 1.3 cipher suites, readers are referred to  for the values of CL

and IL. For all DTLS 1.3 cipher suites, readers are referred to .

For all AES-GCM cipher suites recommended for TLS 1.2 and DTLS 1.2 in this document, CL can

be derived by plugging the corresponding parameters into the inequalities in 

 that apply to random, partially implicit nonces, i.e., the nonce construction used

in TLS 1.2. Although the obtained figures are slightly higher than those for TLS 1.3, it is 

 that the same limit of 2
24.5

 records is used for both versions.

For all AES-GCM cipher suites recommended for DTLS 1.2, IL (obtained from the same

inequalities referenced above) is 2
28

.

1. 

2. 

SHOULD

SHOULD

Section 6 of [RFC9001]

Section 5.5 of [RFC8446]

Section 4.5.3 of [RFC9147]

Section 6.1 of

[AEAD-LIMITS]

RECOMMENDED

4.5. Public Key Length 

When using the cipher suites recommended in this document, two public keys are normally used

in the TLS handshake: one for the Diffie-Hellman key agreement and one for server

authentication. Where a client certificate is used, a third public key is added.
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With a key exchange based on modular exponential (MODP) Diffie-Hellman groups ("DHE"

cipher suites), DH key lengths of at least 2048 bits are .

Rationale: For various reasons, in practice, DH keys are typically generated in lengths that are

powers of two (e.g., 2
10

 = 1024 bits, 2
11

 = 2048 bits, 2
12

 = 4096 bits). Because a DH key of 1228 bits

would be roughly equivalent to only an 80-bit symmetric key , it is better to use keys

longer than that for the "DHE" family of cipher suites. A DH key of 1926 bits would be roughly

equivalent to a 100-bit symmetric key . A DH key of 2048 bits (equivalent to a 112-bit

symmetric key) is the minimum allowed by the latest revision of  as of this

writing (see in particular Appendix D of that document).

As noted in , correcting for the emergence of The Weizmann Institute Relation Locator

(TWIRL) machine  would imply that 1024-bit DH keys yield about 61 bits of equivalent

strength and that a 2048-bit DH key would yield about 92 bits of equivalent strength. The Logjam

attack  further demonstrates that 1024-bit Diffie-Hellman parameters should be avoided.

With regard to ECDH keys, implementers are referred to the IANA "TLS Supported Groups"

registry (formerly known as the "EC Named Curve Registry") within the "Transport Layer

Security (TLS) Parameters" registry  and in particular to the "recommended" groups.

Curves of less than 224 bits  be used. This recommendation is in line with the latest

revision of .

When using RSA, servers  authenticate using certificates with at least a 2048-bit modulus

for the public key. In addition, the use of the SHA-256 hash algorithm is  and

SHA-1 or MD5  be used  (for more details, see also , for which

the current version at the time of writing is 1.8.4). Clients  indicate to servers that they

request SHA-256 by using the "Signature Algorithms" extension defined in TLS 1.2. For TLS 1.3,

the same requirement is already specified by .

REQUIRED

[RFC3766]

[RFC3766]

[NIST.SP.800-56A]

[RFC3766]

[TWIRL]

[Logjam]

[IANA_TLS]

MUST NOT

[NIST.SP.800-56A]

MUST

RECOMMENDED

MUST NOT [RFC9155] [CAB-Baseline]

MUST

[RFC8446]

4.6. Truncated HMAC 

Implementations  use the Truncated HMAC Extension, defined in 

.

Rationale: The extension does not apply to the AEAD cipher suites recommended above.

However, it does apply to most other TLS cipher suites. Its use has been shown to be insecure in 

.

MUST NOT Section 7 of

[RFC6066]

[PatersonRS11]

5. Applicability Statement 

The recommendations of this document primarily apply to the implementation and deployment

of application protocols that are most commonly used with TLS and DTLS on the Internet today.

Examples include, but are not limited to:

Web software and services that wish to protect HTTP traffic with TLS. 

Email software and services that wish to protect IMAP, Post Office Protocol version 3 (POP3),

or SMTP traffic with TLS. 

• 

• 
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Instant-messaging software and services that wish to protect Extensible Messaging and

Presence Protocol (XMPP) or Internet Relay Chat (IRC) traffic with TLS. 

Realtime media software and services that wish to protect Secure Realtime Transport

Protocol (SRTP) traffic with DTLS. 

This document does not modify the implementation and deployment recommendations (e.g.,

mandatory-to-implement cipher suites) prescribed by existing application protocols that employ

TLS or DTLS. If the community that uses such an application protocol wishes to modernize its

usage of TLS or DTLS to be consistent with the best practices recommended here, it needs to

explicitly update the existing application protocol definition (one example is , which

updates ).

Designers of new application protocols developed through the Internet Standards Process 

 are expected at minimum to conform to the best practices recommended here, unless

they provide documentation of compelling reasons that would prevent such conformance (e.g.,

widespread deployment on constrained devices that lack support for the necessary algorithms).

Although many of the recommendations provided here might also apply to QUIC insofar that it

uses the TLS 1.3 handshake protocol, QUIC and other such secure transport protocols are out of

scope of this document. For QUIC specifically, readers are referred to .

This document does not address the use of TLS in constrained-node networks . For

recommendations regarding the profiling of TLS and DTLS for small devices with severe

constraints on power, memory, and processing resources, the reader is referred to  and

.

• 

• 

[RFC7590]

[RFC6120]

[RFC2026]

Section 9.2 of [RFC9001]

[RFC7228]

[RFC7925]

[IOT-PROFILE]

Confidentiality:

Data integrity:

Authentication:

5.1. Security Services 

This document provides recommendations for an audience that wishes to secure their

communication with TLS to achieve the following:

all application-layer communication is encrypted with the goal that no party

should be able to decrypt it except the intended receiver. 

any changes made to the communication in transit are detectable by the

receiver. 

an endpoint of the TLS communication is authenticated as the intended entity

to communicate with. 

With regard to authentication, TLS enables authentication of one or both endpoints in the

communication. In the context of opportunistic security , TLS is sometimes used

without authentication. As discussed in Section 5.2, considerations for opportunistic security are

not in scope for this document.

If deployers deviate from the recommendations given in this document, they need to be aware

that they might lose access to one of the foregoing security services.

[RFC7435]
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This document applies only to environments where confidentiality is required. It requires

algorithms and configuration options that enforce secrecy of the data in transit.

This document also assumes that data integrity protection is always one of the goals of a

deployment. In cases where integrity is not required, it does not make sense to employ TLS in the

first place. There are attacks against confidentiality-only protection that utilize the lack of

integrity to also break confidentiality (see, for instance,  in the context of IPsec).

This document addresses itself to application protocols that are most commonly used on the

Internet with TLS and DTLS. Typically, all communication between TLS clients and TLS servers

requires all three of the above security services. This is particularly true where TLS clients are

user agents like web browsers or email clients.

This document does not address the rarer deployment scenarios where one of the above three

properties is not desired, such as the use case described in Section 5.2. As another scenario

where confidentiality is not needed, consider a monitored network where the authorities in

charge of the respective traffic domain require full access to unencrypted (plaintext) traffic and

where users collaborate and send their traffic in the clear.

[DegabrieleP07]

5.2. Opportunistic Security 

There are several important scenarios in which the use of TLS is optional, i.e., the client decides

dynamically ("opportunistically") whether to use TLS with a particular server or to connect in the

clear. This practice, often called "opportunistic security", is described at length in  and

is often motivated by a desire for backward compatibility with legacy deployments.

In these scenarios, some of the recommendations in this document might be too strict, since

adhering to them could cause fallback to cleartext, a worse outcome than using TLS with an

outdated protocol version or cipher suite.

[RFC7435]

6. IANA Considerations 

This document has no IANA actions.

7. Security Considerations 

This entire document discusses the security practices directly affecting applications using the TLS

protocol. This section contains broader security considerations related to technologies used in

conjunction with or by TLS. The reader is referred to the Security Considerations sections of TLS

1.3 , DTLS 1.3 , TLS 1.2 , and DTLS 1.2  for further

context.

[RFC8446] [RFC9147] [RFC5246] [RFC6347]

7.1. Host Name Validation 

Application authors should take note that some TLS implementations do not validate host names.

If the TLS implementation they are using does not validate host names, authors might need to

write their own validation code or consider using a different TLS implementation.
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It is noted that the requirements regarding host name validation (and, in general, binding

between the TLS layer and the protocol that runs above it) vary between different protocols. For

HTTPS, these requirements are defined by Sections 4.3.3, 4.3.4, and 4.3.5 of .

Host name validation is security-critical for all common TLS use cases. Without it, TLS ensures

that the certificate is valid and guarantees possession of the private key but does not ensure that

the connection terminates at the desired endpoint. Readers are referred to  for further

details regarding generic host name validation in the TLS context. In addition, that RFC contains

a long list of application protocols, some of which implement a policy very different from HTTPS.

If the host name is discovered indirectly and insecurely (e.g., by a cleartext DNS query for an SRV

or Mail Exchange (MX) record), it  be used as a reference identifier  even

when it matches the presented certificate. This proviso does not apply if the host name is

discovered securely (for further discussion, see  and ).

Host name validation typically applies only to the leaf "end entity" certificate. Naturally, in order

to ensure proper authentication in the context of the PKI, application clients need to verify the

entire certification path in accordance with .

[RFC9110]

[RFC6125]

SHOULD NOT [RFC6125]

[RFC7673] [RFC7672]

[RFC5280]

7.2. AES-GCM 

Section 4.2 recommends the use of the AES-GCM authenticated encryption algorithm. Please

refer to  for security considerations that apply specifically to AES-GCM

when used with TLS.

Section 6 of [RFC5288]

7.2.1. Nonce Reuse in TLS 1.2 

The existence of deployed TLS stacks that mistakenly reuse the AES-GCM nonce is documented in

, showing there is an actual risk of AES-GCM getting implemented insecurely and

thus making TLS sessions that use an AES-GCM cipher suite vulnerable to attacks such as 

. (See  records: CVE-2016-0270, CVE-2016-10213, CVE-2016-10212, and

CVE-2017-5933.)

While this problem has been fixed in TLS 1.3, which enforces a deterministic method to generate

nonces from record sequence numbers and shared secrets for all its AEAD cipher suites

(including AES-GCM), TLS 1.2 implementations could still choose their own (potentially insecure)

nonce generation methods.

It is therefore  that TLS 1.2 implementations use the 64-bit sequence number to

populate the nonce_explicit part of the GCM nonce, as described in the first two paragraphs of 

. This stronger recommendation updates , which

specifies that the use of 64-bit sequence numbers to populate the nonce_explicit field is

optional.

We note that at the time of writing, there are no cipher suites defined for nonce-reuse-resistant

algorithms such as AES-GCM-SIV .

[Boeck2016]

[Joux2006] [CVE]

RECOMMENDED

Section 5.3 of [RFC8446] Section 3 of [RFC5288]

[RFC8452]
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7.3. Forward Secrecy 

Forward secrecy (also called "perfect forward secrecy" or "PFS" and defined in ) is a

defense against an attacker who records encrypted conversations where the session keys are

only encrypted with the communicating parties' long-term keys.

Should the attacker be able to obtain these long-term keys at some point later in time, the session

keys and thus the entire conversation could be decrypted.

In the context of TLS and DTLS, such compromise of long-term keys is not entirely implausible. It

can happen, for example, due to:

A client or server being attacked by some other attack vector, and the private key retrieved. 

A long-term key retrieved from a device that has been sold or otherwise decommissioned

without prior wiping. 

A long-term key used on a device as a default key . 

A key generated by a trusted third party like a CA and later retrieved from it by either

extortion or compromise . 

A cryptographic breakthrough or the use of asymmetric keys with insufficient length 

. 

Social engineering attacks against system administrators. 

Collection of private keys from inadequately protected backups. 

Forward secrecy ensures in such cases that it is not feasible for an attacker to determine the

session keys even if the attacker has obtained the long-term keys some time after the

conversation. It also protects against an attacker who is in possession of the long-term keys but

remains passive during the conversation.

Forward secrecy is generally achieved by using the Diffie-Hellman scheme to derive session keys.

The Diffie-Hellman scheme has both parties maintain private secrets and send parameters over

the network as modular powers over certain cyclic groups. The properties of the so-called

Discrete Logarithm Problem (DLP) allow the parties to derive the session keys without an

eavesdropper being able to do so. There is currently no known attack against DLP if sufficiently

large parameters are chosen. A variant of the Diffie-Hellman scheme uses elliptic curves instead

of the originally proposed modular arithmetic. Given the current state of the art, Elliptic Curve

Diffie-Hellman appears to be more efficient, permits shorter key lengths, and allows less freedom

for implementation errors than finite-field Diffie-Hellman.

Unfortunately, many TLS/DTLS cipher suites were defined that do not feature forward secrecy,

e.g., TLS_RSA_WITH_AES_256_CBC_SHA256. This document therefore advocates strict use of

forward-secrecy-only ciphers.

[RFC4949]

• 

• 

• [Heninger2012]

• 

[Soghoian2011]

• 

[Kleinjung2010]

• 

• 
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7.4. Diffie-Hellman Exponent Reuse 

For performance reasons, it is not uncommon for TLS implementations to reuse Diffie-Hellman

and Elliptic Curve Diffie-Hellman exponents across multiple connections. Such reuse can result

in major security issues:

If exponents are reused for too long (in some cases, even as little as a few hours), an attacker

who gains access to the host can decrypt previous connections. In other words, exponent

reuse negates the effects of forward secrecy. 

TLS implementations that reuse exponents should test the DH public key they receive for

group membership, in order to avoid some known attacks. These tests are not standardized

in TLS at the time of writing, although general guidance in this area is provided by 

 and available in many protocol implementations. 

Under certain conditions, the use of static finite-field DH keys, or of ephemeral finite-field DH

keys that are reused across multiple connections, can lead to timing attacks (such as those

described in ) on the shared secrets used in Diffie-Hellman key exchange. 

An "invalid curve" attack can be mounted against Elliptic Curve DH if the victim does not

verify that the received point lies on the correct curve. If the victim is reusing the DH secrets,

the attacker can repeat the probe varying the points to recover the full secret (see 

 and ). 

To address these concerns:

TLS implementations  use static finite-field DH keys and  reuse

ephemeral finite-field DH keys across multiple connections. 

Server implementations that want to reuse Elliptic Curve DH keys  either use a "safe

curve"  (e.g., X25519) or perform the checks described in  on

the received points. 

• 

• 

[NIST.SP.

800-56A]

• 

[RACCOON]

• 

[Antipa2003] [Jager2015]

• SHOULD NOT SHOULD NOT

• SHOULD

[SAFECURVES] [NIST.SP.800-56A]

7.5. Certificate Revocation 

The following considerations and recommendations represent the current state of the art

regarding certificate revocation, even though no complete and efficient solution exists for the

problem of checking the revocation status of common public key certificates :

Certificate revocation is an important tool when recovering from attacks on the TLS

implementation as well as cases of misissued certificates. TLS implementations 

implement a strategy to distrust revoked certificates. 

Although Certificate Revocation Lists (CRLs) are the most widely supported mechanism for

distributing revocation information, they have known scaling challenges that limit their

usefulness, despite workarounds such as partitioned CRLs and delta CRLs. The more modern 

 and the follow-on Let's Revoke  build on the availability of Certificate

Transparency  logs and aggressive compression to allow practical use of the CRL

infrastructure, but at the time of writing, neither solution is deployed for client-side

revocation processing at scale. 

[RFC5280]

• 

MUST

• 

[CRLite] [LetsRevoke]

[RFC9162]
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8. References 

8.1. Normative References 

Proprietary mechanisms that embed revocation lists in the web browser's configuration

database cannot scale beyond the few most heavily used web servers. 

The Online Certification Status Protocol (OCSP)  in its basic form presents both

scaling and privacy issues. In addition, clients typically "soft-fail", meaning that they do not

abort the TLS connection if the OCSP server does not respond. (However, this might be a

workaround to avoid denial-of-service attacks if an OCSP responder is taken offline.) For a

recent survey of the status of OCSP deployment in the web PKI, see . 

The TLS Certificate Status Request extension ( ), commonly called

"OCSP stapling", resolves the operational issues with OCSP. However, it is still ineffective in

the presence of an active on-path attacker because the attacker can simply ignore the client's

request for a stapled OCSP response. 

 defines a certificate extension that indicates that clients must expect stapled OCSP

responses for the certificate and must abort the handshake ("hard-fail") if such a response is

not available. 

OCSP stapling as used in TLS 1.2 does not extend to intermediate certificates within a

certificate chain. The Multiple Certificate Status extension  addresses this

shortcoming, but it has seen little deployment and had been deprecated by . As a

result, although this extension was recommended for TLS 1.2 in , it is no longer

recommended by this document. 

TLS 1.3 ( ) allows the association of OCSP information with

intermediate certificates by using an extension to the CertificateEntry structure. However,

using this facility remains impractical because many certification authorities (CAs) either do

not publish OCSP for CA certificates or publish OCSP reports with a lifetime that is too long to

be useful. 

Both CRLs and OCSP depend on relatively reliable connectivity to the Internet, which might

not be available to certain kinds of nodes. A common example is newly provisioned devices

that need to establish a secure connection in order to boot up for the first time. 

For the common use cases of public key certificates in TLS, servers  support the following

as a best practice given the current state of the art and as a foundation for a possible future

solution: OCSP  and OCSP stapling using the status_request extension defined in 

. Note that the exact mechanism for embedding the status_request extension differs

between TLS 1.2 and 1.3. As a matter of local policy, server operators  request that CAs issue

must-staple  certificates for the server and/or for client authentication, but we

recommend reviewing the operational conditions before deciding on this approach.

The considerations in this section do not apply to scenarios where the DNS-Based Authentication

of Named Entities (DANE) TLSA resource record  is used to signal to a client which

certificate a server considers valid and good to use for TLS connections.
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Appendix A. Differences from RFC 7525 

This revision of the Best Current Practices contains numerous changes, and this section is

focused on the normative changes.

High-level differences:

Described the expectations from new TLS-incorporating transport protocols and from new

application protocols layered on TLS. 

Clarified items (e.g., renegotiation) that only apply to TLS 1.2. 

Changed the status of TLS 1.0 and 1.1 from " " to " ". 

Added TLS 1.3 at a " " level. 

Made similar changes to DTLS. 

Included specific guidance for multiplexed protocols. 

-level implementation requirement for ALPN and more specific -level

guidance for ALPN and SNI. 

Clarified discussion of strict TLS policies, including -level recommendations. 

Limits on key usage. 

New attacks since : ALPACA, Raccoon, Logjam, and "Nonce-Disrespecting

Adversaries". 

RFC 6961 (OCSP status_request_v2) has been deprecated. 

-level requirement for server-side RSA certificates to have a 2048-bit modulus at a

minimum, replacing a " ". 

Differences specific to TLS 1.2:

-level guidance on AES-GCM nonce generation. 

 use (static or ephemeral) finite-field DH key agreement. 

• 

◦ 

◦ 

◦ SHOULD NOT MUST NOT

◦ SHOULD

◦ 

◦ 

◦ MUST SHOULD

◦ MUST

◦ 

◦ [RFC7457]

◦ 

◦ MUST

SHOULD

• 

◦ SHOULD

◦ SHOULD NOT
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 reuse ephemeral finite-field DH keys across multiple connections. 

 use static Elliptic Curve DH key exchange. 

2048-bit DH is now a " " and ECDH minimal curve size is 224 (vs. 192 previously). 

Support for extended_master_secret is now a " " (previously it was a soft

recommendation, as the RFC had not been published at the time). Also removed other,

more complicated, related mitigations. 

-level restriction on session ticket validity, replacing a " ". 

-level restriction on the TLS session duration, depending on the rotation period of

an  ticket key. 

Dropped TLS_DHE_RSA_WITH_AES from the recommended ciphers. 

Added TLS_ECDHE_ECDSA_WITH_AES to the recommended ciphers. 

 use the old MTI cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. 

Recommended curve X25519 alongside NIST P-256. 

Differences specific to TLS 1.3:

New TLS 1.3 capabilities: 0-RTT. 

Removed capabilities: renegotiation and compression. 

Added mention of TLS Encrypted Client Hello, but no recommendation for use until it is

finalized. 

-level requirement for forward secrecy in TLS 1.3 session resumption. 

Generic -level guidance to avoid 0-RTT unless it is documented for the particular

protocol. 

◦ SHOULD NOT

◦ SHOULD NOT

◦ MUST

◦ MUST

◦ MUST SHOULD

◦ SHOULD

[RFC5077]

◦ 

◦ 

◦ SHOULD NOT

◦ 

• 

◦ 

◦ 

◦ 

◦ SHOULD

◦ MUST
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       Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols.  Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation.  This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
       RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.
    
     
       
         Status of This Memo
         
            This memo documents an Internet Best Current Practice.
        
         
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further information
            on BCPs is available in Section 2 of RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
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       Introduction
       Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide variety of application protocols, including HTTP    , IMAP  , Post Office Protocol (POP)  , SIP  , SMTP  , and the Extensible Messaging and Presence Protocol (XMPP)  .  Such protocols use both the TLS or DTLS handshake protocol and the TLS or DTLS record layer.



      Although the TLS handshake protocol can also be used with different record layers to define secure transport protocols (the most prominent example is QUIC  ), such transport protocols are not directly in scope for this document; nevertheless, many of the recommendations here might apply insofar as such protocols use the TLS handshake protocol.
       Over the years leading to 2015, the industry had witnessed serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation.  For instance, both the AES-CBC   and RC4   encryption algorithms, which together were once the most widely deployed ciphers, were attacked in the context of TLS.  Detailed information about the attacks known prior to 2015 is provided in a companion document   to the previous version of the TLS recommendations  , which will help the reader understand the rationale behind the recommendations provided here. That document has not been updated in concert with this one; instead, newer attacks are described in this document, as are mitigations for those attacks.
       The TLS community reacted to the attacks described in   in several ways:
       
         Detailed guidance was published on the use of TLS 1.2   and DTLS 1.2   along with earlier protocol versions. This guidance is included in the original   and mostly retained in this revised version; note that this guidance was mostly adopted by the industry since the publication of RFC 7525 in 2015.
         Versions of TLS earlier than 1.2 were deprecated  .
         Version 1.3 of TLS   was released, followed by version 1.3 of DTLS  ; these versions largely mitigate or resolve the described attacks.
      
       Those who implement and deploy TLS and TLS-based protocols need guidance on how they can be used securely.  This document provides guidance for deployed services as well as for software implementations, assuming the implementer expects their code to be deployed in the environments defined in  . Concerning deployment, this document targets a wide audience, namely all deployers who wish to add authentication (be it one-way only or mutual), confidentiality, and data integrity protection to their communications.
       The recommendations herein take into consideration the security of various mechanisms, their technical maturity and interoperability, and their prevalence in implementations at the time of writing.  Unless it is explicitly called out that a recommendation applies to TLS alone or to DTLS alone, each recommendation applies to both TLS and DTLS.
       This document attempts to minimize new guidance to TLS 1.2 implementations, and the overall approach is to encourage systems to move to TLS 1.3. However, this is not always practical. Newly discovered attacks, as well as ecosystem changes, necessitated some new requirements that apply to TLS 1.2 environments. Those are summarized in  .
       Naturally, future attacks are likely, and this document cannot address them.  Those who implement and deploy TLS/DTLS and protocols based on TLS/DTLS are strongly advised to pay attention to future developments.  In particular, although it is known that the creation of quantum computers will have a significant impact on the security of cryptographic primitives and the technologies that use them, currently post-quantum cryptography is a work in progress and it is too early to make recommendations; once the relevant specifications are standardized in the IETF or elsewhere, this document should be updated to reflect best practices at that time.
       As noted, the TLS 1.3 specification resolves many of the vulnerabilities listed in this document. A system that deploys TLS 1.3 should have fewer vulnerabilities than TLS 1.2 or below. Therefore, this document replaces  , with an explicit goal to encourage migration of most uses of TLS 1.2 to TLS 1.3.
       These are minimum recommendations for the use of TLS in the vast majority of implementation and deployment scenarios, with the exception of unauthenticated TLS (see  ). Other specifications that reference this document can have stricter requirements related to one or more aspects of the protocol, based on their particular circumstances (e.g., for use with a specific application protocol); when that is the case, implementers are advised to adhere to those stricter requirements. Furthermore, this document provides a floor, not a ceiling: where feasible, administrators of services are encouraged to go beyond the minimum support available in implementations to provide the strongest security possible. For example, based on knowledge about the deployed base for an existing application protocol and a cost-benefit analysis regarding security strength vs. interoperability, a given service provider might decide to disable TLS 1.2 entirely and offer only TLS 1.3.
       Community knowledge about the strength of various algorithms and feasible attacks can change quickly, and experience shows that a Best Current Practice (BCP) document about security is a point-in-time statement.  Readers are advised to seek out any errata or updates that apply to this document.
       This document updates   in view of the   attack. See   for the details.
       This document updates   in view of the   attack.  See   for the details.
    
     
       Terminology
       A number of security-related terms in this document are used in the sense defined in  ,
including "attack", "authentication", "certificate", "cipher", "compromise", "confidentiality", 
"credential", "data integrity", "encryption", "forward secrecy", "key", "key length", "self-signed certificate", 
"strength", and "strong".
       The key words " MUST", " MUST NOT",
" REQUIRED", " SHALL", " SHALL NOT",
" SHOULD", " SHOULD NOT",
" RECOMMENDED", " NOT RECOMMENDED",
" MAY", and " OPTIONAL" in this document are to be
interpreted as described in BCP 14     when, and only when, they appear in all capitals, as shown
here.
    
     
       General Recommendations
       This section provides general recommendations on the secure use of TLS. Recommendations related to cipher suites are discussed in the following section.
       
         Protocol Versions
         
           SSL/TLS Protocol Versions
           It is important both to stop using old, less secure versions of SSL/TLS and to start using modern, more secure versions; therefore, the following are the recommendations concerning TLS/SSL protocol versions:
           
             
               Implementations  MUST NOT negotiate SSL version 2.  
               
Rationale: Today, SSLv2 is considered insecure  .
            
             
               Implementations  MUST NOT negotiate SSL version 3.  
               
Rationale: SSLv3   was an improvement over SSLv2 and plugged some significant security holes but did not support strong cipher suites. SSLv3 does not support TLS extensions, some of which (e.g., renegotiation_info  ) are security critical.  In addition, with the emergence of the Padding Oracle On Downgraded Legacy Encryption (POODLE) attack  , SSLv3 is now widely recognized as fundamentally insecure.  See   for further details.
            
             
               Implementations  MUST NOT negotiate TLS version 1.0  .  
               
Rationale: TLS 1.0 (published in 1999) does not support many modern, strong cipher suites. In addition, TLS 1.0 lacks a per-record Initialization Vector (IV) for cipher suites based on cipher block chaining (CBC) and does not warn against common padding errors. This and other recommendations in this section are in line with  .
            
             
               Implementations  MUST NOT negotiate TLS version 1.1  .  
               
Rationale: TLS 1.1 (published in 2006) is a security improvement over TLS 1.0 but still does not support certain stronger cipher suites that were introduced with the standardization of TLS 1.2 in 2008, including the cipher suites recommended for TLS 1.2 by this document (see   below).
            
             
               Implementations  MUST support TLS 1.2  .  
               
Rationale: TLS 1.2 is implemented and deployed more widely than TLS 1.3 at this time, and when the recommendations in this document are followed to mitigate known attacks, the use of TLS 1.2 is as safe as the use of TLS 1.3.  In most application protocols that reuse TLS and DTLS, there is no immediate need to migrate solely to TLS 1.3. Indeed, because many application clients are dependent on TLS libraries or operating systems that do not yet support TLS 1.3, proactively deprecating TLS 1.2 would introduce significant interoperability issues, thus harming security more than helping it.  Nevertheless, it is expected that a future version of this BCP will deprecate the use of TLS 1.2 when it is appropriate to do so.
            
             
               Implementations  SHOULD support TLS 1.3   and, if implemented,  MUST prefer to negotiate TLS 1.3 over earlier versions of TLS.  
               
Rationale: TLS 1.3 is a major overhaul to the protocol and resolves many of the security issues with TLS 1.2. To the extent that an implementation supports TLS 1.2 (even if it defaults to TLS 1.3), it  MUST follow the recommendations regarding TLS 1.2 specified in this document.
            
             
               New transport protocols that integrate the TLS/DTLS handshake protocol and/or record layer  MUST use only TLS/DTLS 1.3 (for instance, QUIC   took this approach). New application protocols that employ TLS/DTLS for channel or session encryption  MUST integrate with both TLS/DTLS versions 1.2 and 1.3; nevertheless, in rare cases where broad interoperability is not a concern, application protocol designers  MAY choose to forego TLS 1.2.  
               
Rationale: Secure deployment of TLS 1.3 is significantly easier and less error prone than secure deployment of TLS 1.2. When designing a new secure transport protocol such as QUIC, there is no reason to support TLS 1.2. By contrast, new application protocols that reuse TLS need to support both TLS 1.3 and TLS 1.2 in order to take advantage of underlying library or operating system support for both versions.
            
          
           This BCP applies to TLS 1.3, TLS 1.2, and earlier versions. It is not safe for readers to assume that the recommendations in this BCP apply to any future version of TLS.
        
         
           DTLS Protocol Versions
           DTLS, an adaptation of TLS for UDP datagrams, was introduced when TLS 1.1 was published.  The following are the recommendations with respect to DTLS:
           
             
               Implementations  MUST NOT negotiate DTLS version 1.0  .  
               
Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).
            
             
               Implementations  MUST support DTLS 1.2  .  
               
Version 1.2 of DTLS correlates to version 1.2 of TLS (see above).
(There is no version 1.1 of DTLS.)
            
             
               Implementations  SHOULD support DTLS 1.3   and, if implemented,  MUST prefer to negotiate DTLS version 1.3 over earlier versions of DTLS.  
               
Version 1.3 of DTLS correlates to version 1.3 of TLS (see above).
            
          
        
         
           Fallback to Lower Versions
           TLS/DTLS 1.2 clients  MUST NOT fall back to earlier TLS versions, since those versions have been deprecated  . As a result, the downgrade-protection Signaling Cipher Suite Value (SCSV) mechanism   is no longer needed for clients. In addition, TLS 1.3 implements a new version-negotiation mechanism.
        
      
       
         Strict TLS
         The following recommendations are provided to help prevent "SSL Stripping" and STARTTLS command injection (attacks that are summarized in  ):
         
           Many existing application protocols were designed before the use of TLS became common. These protocols typically support TLS in one of two ways: either via a separate port for TLS-only communication (e.g., port 443 for HTTPS) or via a method for dynamically upgrading a channel from unencrypted to TLS protected (e.g., STARTTLS, which is used in protocols such as IMAP and XMPP). Regardless of the mechanism for protecting the communication channel (TLS-only port or dynamic upgrade), what matters is the end state of the channel. When a protocol defines both a dynamic upgrade method and a separate TLS-only method, then the separate TLS-only method  MUST be supported by implementations and  MUST be configured by administrators to be used in preference to the dynamic upgrade method.  When a protocol supports only a dynamic upgrade method, implementations  MUST provide a way for administrators to set a strict local policy that forbids use of plaintext in the absence of a negotiated TLS channel, and administrators  MUST use this policy.
           HTTP client and server implementations intended for use in the World Wide Web (see 
 )  MUST support the HTTP Strict Transport Security (HSTS) header 
field   so that web servers can advertise that they are willing to 
accept TLS-only clients. Web servers  SHOULD use HSTS to indicate that they are 
willing to accept TLS-only clients, unless they are deployed in such a way that 
using HSTS would in fact weaken overall security (e.g., it can be problematic to 
use HSTS with self-signed certificates, as described in  ).
Similar technologies exist for non-HTTP application protocols, such as Mail Transfer Agent Strict Transport Security (MTA-STS) for 
mail transfer agents   and methods based on DNS-Based Authentication of 
Named Entities (DANE)   for SMTP   and XMPP  .
        
         Rationale: Combining unprotected and TLS-protected communication opens the way to SSL Stripping and similar attacks, since an initial part of the communication is not integrity protected and therefore can be manipulated by an attacker whose goal is to keep the communication in the clear.
      
       
         Compression
         In order to help prevent compression-related attacks (summarized in  ) when using TLS 1.2, implementations and deployments  SHOULD NOT support
TLS-level compression ( ); the only exception is when
the application protocol in question has been proven not to be open to such attacks.
However, even in this case, extreme caution is warranted because of the potential for
	future attacks related to TLS compression. More specifically, the HTTP protocol is known to be vulnerable to compression-related attacks. (This recommendation applies to TLS 1.2 only, because compression has been removed from TLS 1.3.)
         Rationale: TLS compression has been subject to security attacks such as the Compression Ratio Info-leak Made Easy (CRIME) attack.
         Implementers should note that compression at higher protocol levels can allow an active attacker to extract cleartext information from the connection. The Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) attack is one such case. These issues can only be mitigated outside of TLS and are thus outside the scope of this document. See   for further details.
         
           Certificate Compression
           Certificate chains often take up most of the bytes transmitted during
the handshake.  In order to manage their size, some or all of the following
methods can be employed (see also   for further suggestions):
           
             Limit the number of names or extensions.
             Use keys with small public key representations, like the Elliptic Curve Digital Signature Algorithm (ECDSA).
             Use certificate compression.
          
           To achieve the latter, TLS 1.3 defines the  compress_certificate extension in
 .  See also   for security and privacy
considerations associated with its use.  For the avoidance of doubt, CRIME-style attacks on TLS
compression do not apply to certificate compression.
           Due to the strong likelihood of middlebox interference,
compression in the style of   has not been made available in
TLS 1.2.  In theory, the  cached_info extension defined in   could
be used, but it is not supported widely enough to be considered a practical
alternative.
        
      
       
         TLS Session Resumption
         Session resumption drastically reduces the number of full TLS handshakes and thus is an essential
performance feature for most deployments.
         Stateless session resumption with session tickets is a popular strategy. For TLS 1.2, it is specified in
 .  For TLS 1.3, a more secure mechanism based on the use of a pre-shared key (PSK) is described in
 . See   for a quantitative study of the risks induced by TLS cryptographic "shortcuts", including session resumption.
         When it is used, the resumption information  MUST
be authenticated and encrypted to prevent modification or eavesdropping by an attacker.
Further recommendations apply to session tickets:
         
           A strong cipher  MUST be used when encrypting the ticket (at least as strong as the main TLS cipher suite).
           Ticket-encryption keys  MUST be changed regularly, e.g., once every week, so as not to negate the benefits of forward secrecy (see   for details on forward secrecy). Old ticket-encryption keys  MUST be destroyed at the end of the validity period.
           For similar reasons, session ticket validity  MUST be limited to a reasonable duration (e.g., half as long as ticket-encryption key validity).
           TLS 1.2 does not roll the session key forward within a single session. Thus, to prevent an attack where the server's ticket-encryption key is stolen and used to decrypt the entire content of a session (negating the concept of forward secrecy), a TLS 1.2 server  SHOULD NOT resume sessions that are too old, e.g., sessions that have been open longer than two ticket-encryption key rotation periods.
        
         Rationale: Session resumption is another kind of TLS handshake and therefore must be as secure as the initial handshake. This document ( ) recommends the use of cipher suites that provide forward secrecy, i.e., that prevent an attacker who gains momentary access to the TLS endpoint (either client or server) and its secrets from reading either past or future communication. The tickets must be managed so as not to negate this security property.
         TLS 1.3 provides the powerful option of forward secrecy even within a long-lived connection
that is periodically resumed.   recommends that clients  SHOULD
send a "key_share" when initiating session resumption.
In order to gain forward secrecy, this document recommends that server implementations  SHOULD
select the "psk_dhe_ke" PSK key exchange mode and 
respond with a "key_share" to complete an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) exchange on each session resumption.
As a more performant alternative, server implementations  MAY refrain from responding with a 
"key_share" until a certain amount of time (e.g., measured in hours) has passed since the last 
ECDHE exchange; this implies that the "key_share" operation would not occur for the presumed
majority of session resumption requests (which would occur within a few hours) while still ensuring 
forward secrecy for longer-lived sessions.
         TLS session resumption introduces potential privacy issues where the server is able
to track the client, in some cases indefinitely. See   for more details.
      
       
         Renegotiation in TLS 1.2
         The recommendations in this section apply to TLS 1.2 only, because renegotiation has been removed from TLS 1.3.
         Renegotiation in TLS 1.2 is a handshake that establishes new cryptographic parameters for an existing session. The mechanism existed in TLS 1.2 and in earlier protocol versions and was improved following several major attacks including a plaintext injection attack, CVE-2009-3555  .
         TLS 1.2 clients and servers  MUST implement the  renegotiation_info extension, as defined in  .
         TLS 1.2 clients  MUST send  renegotiation_info in the Client Hello.  If the server does not acknowledge the extension, the client  MUST generate a fatal  handshake_failure alert prior to terminating the connection.
         Rationale: It is not safe for a client to connect to a TLS 1.2 server that does not support  renegotiation_info regardless of whether either endpoint actually implements renegotiation.  See also  .
         A related attack resulting from TLS session parameters not being properly authenticated is a Triple Handshake  . To address this attack, TLS 1.2 implementations  MUST support the  extended_master_secret extension defined in  .
      
       
         Post-Handshake Authentication
         Renegotiation in TLS 1.2 was (partially) replaced in TLS 1.3 by separate post-handshake authentication and key update mechanisms.  In the context of protocols that multiplex requests over a single connection (such as HTTP/2  ), post-handshake authentication has the same problems as TLS 1.2 renegotiation. Multiplexed protocols  SHOULD follow the advice provided for HTTP/2 in  .
      
       
         Server Name Indication (SNI)
         TLS implementations  MUST support the Server Name Indication (SNI) extension defined in   for those higher-level protocols that would benefit from it, including HTTPS. However, the actual use of SNI in particular circumstances is a matter of local policy.  At the time of writing, a technology for encrypting the SNI (called Encrypted Client Hello) is being worked on in the TLS Working Group  .  Once that method has been standardized and widely implemented, it will likely be appropriate to recommend its usage in a future version of this BCP.
         Rationale: SNI supports deployment of multiple TLS-protected virtual servers on a single
      address, and therefore enables fine-grained security for these virtual servers,
      by allowing each one to have its own certificate. However, SNI also leaks the 
      target domain for a given connection; this information leak will be closed by 
      use of TLS Encrypted Client Hello once that method has been standardized.
         In order to prevent the attacks described in  , a server that does not
recognize the presented server name  SHOULD NOT continue the handshake and
instead  SHOULD fail with a fatal-level  unrecognized_name(112) alert.  Note that this
recommendation updates  , which stated:
         If the server understood the
ClientHello extension but does not recognize the server name, the server  SHOULD
take one of two actions: either abort the handshake by sending a fatal-level
 unrecognized_name(112) alert or continue the handshake.
          
Clients  SHOULD abort the handshake if the server acknowledges the SNI extension but presents a certificate with a different hostname than the one sent by the client.
      
       
         Application-Layer Protocol Negotiation (ALPN)
         TLS implementations (both client- and server-side)  MUST support the
Application-Layer Protocol Negotiation (ALPN) extension  .
         In order to prevent "cross-protocol" attacks resulting from failure to ensure
that a message intended for use in one protocol cannot be mistaken for a
message for use in another protocol, servers are advised to strictly enforce the
behavior prescribed in  :

          In the event that the
server supports no protocols that the client advertises, then the server  SHALL
respond with a fatal ' no_application_protocol' alert.
         
Clients  SHOULD
abort the handshake if the server acknowledges the ALPN extension
but does not select a protocol from the client list.  Failure to do so can
result in attacks such those described in  .
         Protocol developers are strongly encouraged to register an ALPN identifier 
for their protocols. This applies both to new protocols and to well-established 
protocols; however, because the latter might have a large deployed base,
strict enforcement of ALPN usage may not be feasible when an ALPN 
identifier is registered for a well-established protocol.
      
       
         Multi-Server Deployment
         Deployments that involve multiple servers or services can increase the size of the attack surface for TLS. Two scenarios are of interest:
          Deployments in which multiple services handle the same domain name via different 
protocols (e.g., HTTP and IMAP). In this case, an attacker might be able to direct 
a connecting endpoint to the service offering a different protocol and mount a 
cross-protocol attack. In a cross-protocol attack, the client and server believe 
they are using different protocols, which the attacker might exploit if messages 
sent in one protocol are interpreted as messages in the other protocol with 
undesirable effects (see   for more detailed information about this class 
of attacks). To mitigate this threat, service providers  SHOULD deploy ALPN (see
 ). In addition, to the extent possible, they  SHOULD ensure that multiple 
services handling the same domain name provide equivalent levels of security that are consistent with the recommendations in this document; such measures  SHOULD include the handling of configurations across multiple TLS servers and protections against compromise of credentials held by those servers.
           Deployments in which multiple servers providing the same service have different
TLS configurations. In this case, an attacker might be able to direct a connecting 
endpoint to a server with a TLS configuration that is more easily exploitable (see 
  for more detailed information about this class of attacks). To mitigate 
this threat, service providers  SHOULD ensure that all servers providing the same 
service provide equivalent levels of security that are consistent with the 
recommendations in this document.
        
      
       
         Zero Round-Trip Time (0-RTT) Data in TLS 1.3
         The 0-RTT early data feature is new in TLS 1.3. It provides reduced latency
when TLS connections are resumed, at the potential cost of certain security properties.
As a result, it requires special attention from implementers on both
the server and the client side. Typically, this extends to the
TLS library as well as protocol layers above it.
         For HTTP over TLS, refer to   for guidance.
         For QUIC on TLS, refer to  .
         For other protocols, generic guidance is given in Section   and Appendix   of  .
To paraphrase Appendix  , applications  MUST avoid this feature unless
an explicit specification exists for the application protocol in question to clarify
when 0-RTT is appropriate and secure. This can take the form of an IETF RFC,
a non-IETF standard, or documentation associated with a non-standard protocol.
      
    
     
       Recommendations: Cipher Suites
       TLS 1.2 provided considerable flexibility in the selection of cipher suites. Unfortunately, the security of some of these cipher suites has degraded over time to the point where some are known to be insecure (this is one reason why TLS 1.3 restricted such flexibility). Incorrectly configuring a server leads to no or reduced security.  This section includes recommendations on the selection and negotiation of cipher suites.
       
         General Guidelines
         Cryptographic algorithms weaken over time as cryptanalysis improves: algorithms that were once considered strong become weak. Consequently, cipher suites using weak algorithms need to be phased out and replaced with more secure cipher suites. This helps to ensure that the desired security properties still hold. SSL/TLS has been in existence for well over 20 years and many of the cipher suites that have been recommended in various versions of SSL/TLS are now considered weak or at least not as strong as desired. Therefore, this section modernizes the recommendations concerning cipher suite selection.
         
           
             Implementations  MUST NOT negotiate the cipher suites with NULL encryption.  
             
Rationale: The NULL cipher suites do not encrypt traffic and 
             so provide no confidentiality services. Any entity in the 
             network with access to the connection can view the plaintext 
             of contents being exchanged by the client and server. Nevertheless, this document does not discourage software from
             implementing NULL cipher suites, since they can be useful for 
             testing and debugging.
          
           
             Implementations  MUST NOT negotiate RC4 cipher suites.  
             
Rationale: The RC4 stream cipher has a variety of cryptographic 
             weaknesses, as documented in  .
     Note that DTLS specifically forbids the use of RC4 already.
          
           
             Implementations  MUST NOT negotiate cipher suites offering less 
             than 112 bits of security, including so-called "export-level" 
             encryption (which provides 40 or 56 bits of security).  
             
Rationale: Based on  , at least 112 bits 
             of security is needed.  40-bit and 56-bit security (found in 
             so-called "export ciphers") are considered 
             insecure today.
          
           
             Implementations  SHOULD NOT negotiate cipher suites that use 
             algorithms offering less than 128 bits of security.  
             
Rationale: Cipher suites that offer 112 or more bits but less than 128 bits
             of security are not considered weak at this time; however, it is 
             expected that their useful lifespan is short enough to justify 
             supporting stronger cipher suites at this time.  128-bit ciphers 
             are expected to remain secure for at least several years and 
             256-bit ciphers until the next fundamental technology 
             breakthrough.  Note that, because of so-called 
             "meet-in-the-middle" attacks  ,
             some legacy cipher suites (e.g., 168-bit Triple DES (3DES)) have an effective 
             key length that is smaller than their nominal key length (112 
             bits in the case of 3DES).  Such cipher suites should be 
             evaluated according to their effective key length.
          
           
             Implementations  SHOULD NOT negotiate cipher suites based on 
             RSA key transport, a.k.a. "static RSA".  
             
Rationale: These cipher suites, which have assigned values starting 
             with the string "TLS_RSA_WITH_*", have several drawbacks, especially
             the fact that they do not support forward secrecy.
          
           
             Implementations  SHOULD NOT negotiate cipher suites based on
             non-ephemeral (static) finite-field Diffie-Hellman (DH) key agreement. Similarly, implementations  SHOULD NOT negotiate non-ephemeral Elliptic Curve DH key agreement.  
             
Rationale: The former cipher suites, which have assigned values prefixed by "TLS_DH_*", have several drawbacks, especially
             the fact that they do not support forward secrecy. The latter ("TLS_ECDH_*") also lack forward secrecy and are subject to invalid curve attacks  .
          
           
             Implementations  MUST support and prefer to negotiate cipher suites 
             offering forward secrecy.  However, TLS 1.2 implementations  SHOULD NOT negotiate
             cipher suites based on ephemeral finite-field Diffie-Hellman key
             agreement (i.e., "TLS_DHE_*" suites).  This is justified by the known fragility
             of the construction (see  ) and the limitation around
             negotiation, including using  , which has seen very
             limited uptake.  
             
Rationale: Forward secrecy (sometimes called "perfect forward 
             secrecy") prevents the recovery of information that was encrypted 
             with older session keys, thus limiting how far back in time data
             can be decrypted when an attack is successful.  See Sections  
             and   for a detailed discussion.
          
        
      
       
         Cipher Suites for TLS 1.2
         Given the foregoing considerations, implementation and deployment of the following cipher suites is  RECOMMENDED:
         
           TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
           TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
           TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
           TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
        
         As these are Authenticated Encryption with Associated Data (AEAD) algorithms  , these cipher suites are supported only in TLS 1.2 and not in earlier protocol versions.
         Typically, to prefer these suites, the order of suites needs to be explicitly configured in server software.  It would be ideal if server software implementations were to prefer these suites by default.
         Some devices have hardware support for AES Counter Mode with CBC-MAC (AES-CCM) but not AES Galois/Counter Mode (AES-GCM), so they are unable to follow the foregoing recommendations regarding cipher suites.  There are even devices that do not support public key cryptography at all, but these are out of scope entirely.
         A cipher suite that operates in CBC (cipher block chaining) mode (e.g.,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256)  SHOULD NOT be used unless the
 encrypt_then_mac extension   is also successfully negotiated.
This requirement applies to both client and server implementations.
         When using ECDSA signatures for authentication of TLS peers, it is  RECOMMENDED that implementations use the NIST curve P-256. In addition, to avoid predictable or repeated nonces (which could reveal the long-term signing key), it is  RECOMMENDED that implementations implement "deterministic ECDSA" as specified in   and in line with the recommendations in  .
         Note that implementations of "deterministic ECDSA" may be vulnerable to certain
side-channel and fault injection attacks precisely because of their
determinism.  While most fault injection attacks described in the literature assume
physical access to the device (and therefore are more relevant in Internet of Things (IoT)
deployments with poor or non-existent physical security), some can be carried
out remotely  , e.g., as Rowhammer   variants.  In
deployments where side-channel attacks and fault injection attacks are a
concern, implementation strategies combining both randomness and determinism
(for example, as described in  ) can
be used to avoid the risk of successful extraction of the signing key.
         
           Implementation Details
           Clients  SHOULD include TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as the first proposal to any server.  Servers  MUST prefer this cipher suite over weaker cipher suites whenever it is proposed, even if it is not the first proposal.  Clients are of course free to offer stronger cipher suites, e.g., using AES-256; when they do, the server  SHOULD prefer the stronger cipher suite unless there are compelling reasons (e.g., seriously degraded performance) to choose otherwise.
           The previous version of the TLS recommendations   implicitly allowed the old RFC 5246 mandatory-to-implement cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA. At the time of writing, this cipher suite does not provide additional interoperability, except with very old clients. As with other cipher suites that do not provide forward secrecy, implementations  SHOULD NOT support this cipher suite. Other application protocols specify other cipher suites as mandatory to implement (MTI).
             allows clients and servers to negotiate ECDH parameters (curves). Both clients and servers  SHOULD include the "Supported Elliptic Curves Extension"  .  Clients and servers  SHOULD support the NIST P‑256 (secp256r1)   and X25519 (x25519)   curves.  Note that   deprecates all but the uncompressed point format.  Therefore, if the client sends an  ec_point_formats extension, the ECPointFormatList  MUST contain a single element, "uncompressed".
        
      
       
         Cipher Suites for TLS 1.3
         This document does not specify any cipher suites for TLS 1.3. Readers
are referred to   for cipher suite recommendations.
      
       
         Limits on Key Usage
         All ciphers have an upper limit on the amount of traffic that can be securely
protected with any given key. In the case of AEAD cipher suites, two separate
limits are maintained for each key:
          Confidentiality limit (CL), i.e., the number of records that can be
encrypted.
           Integrity limit (IL), i.e., the number of records that are allowed to fail
authentication.
        
         The latter applies to DTLS (and also to QUIC) but not to TLS itself, since TLS connections are torn down on the
first decryption failure.
         When a sender is approaching CL, the implementation  SHOULD initiate a new handshake (in TLS 1.3, this can be achieved by sending a KeyUpdate message on the established session) to rotate the session key. When a receiver has reached IL, the implementation  SHOULD close the connection. Although these recommendations are a best practice, implementers need to be aware that it is not always easy to accomplish them in protocols that are built on top of TLS/DTLS without introducing coordination across layer boundaries.  See   for an example of the cooperation that was necessary in QUIC between the crypto and transport layers to support key updates.  Note that in general, application protocols might not be able to emulate that method given their more constrained interaction with TLS/DTLS. As a result of these complexities, these recommendations are not mandatory.
         For all TLS 1.3 cipher suites, readers are referred to   for the values of CL and IL. For all DTLS 1.3 cipher suites, readers are referred to  .
         For all AES-GCM cipher suites recommended for TLS 1.2 and DTLS 1.2 in this
document, CL can be derived by plugging the corresponding parameters into the
inequalities in   that apply to
random, partially implicit nonces, i.e., the nonce construction used in TLS
1.2.  Although the obtained figures are slightly higher than those for TLS 1.3,
it is  RECOMMENDED that the same limit of 2 24.5 records is used for
both versions.
         For all AES-GCM cipher suites recommended for DTLS 1.2, IL (obtained from the
same inequalities referenced above) is 2 28.
      
       
         Public Key Length
         When using the cipher suites recommended in this document, two public keys are 
      normally used in the TLS handshake: one for the Diffie-Hellman key agreement
      and one for server authentication. Where a client certificate is used, a third 
      public key is added.
         With a key exchange based on modular exponential (MODP) Diffie-Hellman groups ("DHE" cipher suites), DH key lengths of at least 2048 bits are  REQUIRED.
         Rationale: For various reasons, in practice, DH keys are typically generated in lengths
 that are powers of two (e.g., 2 10 = 1024 bits, 2 11 = 2048 bits, 2 12 = 4096 bits).
 Because a DH key of 1228 bits would be roughly equivalent to only an 80-bit symmetric key
 , it is better to use keys longer than that for the "DHE" family of cipher suites.
A DH key of 1926 bits would be roughly equivalent to a 100-bit symmetric key  .
A DH key of 2048 bits (equivalent to a 112-bit symmetric key) 
is the minimum allowed by the latest revision of   as of this writing
(see in particular  Appendix D of that document).
         As noted in  , correcting for the emergence of The Weizmann Institute Relation Locator (TWIRL) machine   would imply that 1024-bit DH keys yield about 61 bits of equivalent strength and that a 2048-bit DH key would yield about 92 bits of equivalent strength.
The Logjam attack   further demonstrates that 1024-bit Diffie-Hellman parameters
should be avoided.
         With regard to ECDH keys, implementers are referred to the IANA "TLS Supported Groups" registry (formerly known as the "EC Named Curve
Registry") within the
   "Transport Layer Security (TLS) Parameters" registry   and in particular to the "recommended"
   groups.  Curves of less than 224 bits  MUST NOT be used. This recommendation is in line with the latest
revision of  .
         When using RSA, servers  MUST authenticate using certificates with at least a 2048-bit modulus for the public key. In addition, the use of the SHA-256 hash algorithm is  RECOMMENDED and SHA-1 or MD5  MUST NOT be used   (for more details, see also  , for which the current version at the time of writing is 1.8.4). Clients  MUST indicate to servers that they request SHA-256 by using the "Signature Algorithms" extension defined in TLS 1.2. For TLS 1.3, the same requirement is already specified by  .
         
      
       
         Truncated HMAC
         Implementations  MUST NOT use the Truncated HMAC Extension, defined in  .
         Rationale: The extension does not apply to the AEAD
      cipher suites recommended above. However, it does apply to most other TLS cipher suites. Its use
      has been shown to be insecure in  .
      
    
     
       Applicability Statement
       The recommendations of this document primarily apply to the implementation and deployment of application protocols that are most commonly used with TLS and DTLS on the Internet today.  Examples include, but are not limited to:
       
         Web software and services that wish to protect HTTP traffic with TLS.
         Email software and services that wish to protect IMAP, Post Office Protocol version 3 (POP3), or SMTP traffic with TLS.
         Instant-messaging software and services that wish to protect Extensible Messaging and Presence Protocol (XMPP) or Internet Relay Chat (IRC) traffic with TLS.
         Realtime media software and services that wish to protect Secure Realtime Transport Protocol (SRTP) traffic with DTLS.
      
       This document does not modify the implementation and deployment recommendations (e.g., mandatory-to-implement cipher suites) prescribed by existing application protocols that employ TLS or DTLS. If the community that uses such an application protocol wishes to modernize its usage of TLS or DTLS to be consistent with the best practices recommended here, it needs to explicitly update the existing application protocol definition (one example is  , which updates  ).
       Designers of new application protocols developed through the Internet
  Standards Process   are expected at minimum to conform to the best
  practices recommended here, unless they provide documentation of
  compelling reasons that would prevent such conformance (e.g.,
  widespread deployment on constrained devices that lack support for
  the necessary algorithms).
       Although many of the recommendations provided here might also apply to QUIC insofar 
that it uses the TLS 1.3 handshake protocol, QUIC and other such secure transport protocols 
are out of scope of this document. For QUIC specifically, readers are 
referred to  .
       This document does not address the use of TLS in constrained-node networks
 .  For recommendations regarding the profiling of TLS and DTLS for
small devices with severe constraints on power, memory, and processing
resources, the reader is referred to   and
 .
       
         Security Services
         This document provides recommendations for an audience that wishes to secure their communication with TLS to achieve the following:
         
           Confidentiality:

           all application-layer communication is encrypted with the goal   
that no party should be able to decrypt it except the intended receiver.

           Data integrity:

           any changes made to the communication in transit are detectable   
by the receiver.

           Authentication:

           an endpoint of the TLS communication is authenticated as the      
intended entity to communicate with.

        
         With regard to authentication, TLS enables authentication of one or both endpoints in the communication.  In the context of opportunistic security  , TLS is sometimes used without authentication. As discussed in  , considerations for opportunistic security are not in scope for this document.
         If deployers deviate from the recommendations given in this document, they need to be aware that they might lose access to one of the foregoing security services.
         This document applies only to environments where confidentiality is required. It requires algorithms and configuration options that enforce secrecy of the data in transit.
         This document also assumes that data integrity protection is always one of the goals of a deployment. In cases where integrity is not required, it does not make sense to employ TLS in the first place. There are attacks against confidentiality-only protection that utilize the lack of integrity to also break confidentiality (see, for instance,   in the context of IPsec).
         This document addresses itself to application protocols that are most commonly used on the Internet with TLS and DTLS. Typically, all communication between TLS clients and TLS servers requires all three of the above security services. This is particularly true where TLS clients are user agents like web browsers or email clients.
         This document does not address the rarer deployment scenarios where one of the above three properties is not desired, such as the use case described in  .  As another scenario where confidentiality is not needed, consider a monitored network where the authorities in charge of the respective traffic domain require full access to unencrypted (plaintext) traffic and where users collaborate and send their traffic in the clear.
      
       
         Opportunistic Security
         There are several important scenarios in which the use of TLS is optional, i.e., the client decides dynamically ("opportunistically") whether to use TLS with a particular server or to connect in the clear.  This practice, often called "opportunistic security", is described at length in   and is often motivated by a desire for backward compatibility with legacy deployments.
         In these scenarios, some of the recommendations in this document might be too strict, since adhering to them could cause fallback to cleartext, a worse outcome than using TLS with an outdated protocol version or cipher suite.
      
    
     
       IANA Considerations
       This document has no IANA actions.
    
     
       Security Considerations
       This entire document discusses the security practices directly affecting applications
    using the TLS protocol. This section contains broader security considerations related
    to technologies used in conjunction with or by TLS.
    The reader is referred to the Security Considerations sections of TLS 1.3
     , DTLS 1.3  , TLS 1.2  , and DTLS 1.2  
    for further context.
       
         Host Name Validation
         Application authors should take note that some TLS implementations
  do not validate host names.  If the TLS implementation they are
  using does not validate host names, authors might need to write their
  own validation code or consider using a different TLS implementation.
         It is noted that the requirements regarding host name validation (and, in general, binding between the TLS layer and the protocol that runs above it) vary between different protocols. For HTTPS, these requirements are defined by Sections



   ,  , and   of  .
         Host name validation is security-critical for all common TLS use cases. Without it, TLS ensures that the certificate is valid and guarantees possession of the private key but does not ensure that the connection terminates at the desired endpoint. Readers are referred to   for further details regarding generic host name validation in the TLS context. In addition, that RFC contains a long list of application protocols, some of which implement a policy very different from HTTPS.
         If the host name is discovered indirectly and insecurely (e.g., by a cleartext DNS query for an SRV or Mail Exchange (MX) record), it  SHOULD NOT be used as a reference identifier   even when it matches the presented certificate.  This proviso does not apply if the host name is discovered securely (for further discussion, see   and  ).
         Host name validation typically applies only to the leaf "end entity" certificate. Naturally, in order to ensure proper authentication in the context of the PKI, application clients need to verify the entire certification path in accordance with  .
      
       
         AES-GCM
           recommends the use of the AES-GCM authenticated encryption algorithm. Please refer to   for security considerations that apply specifically to AES-GCM when used with TLS.
         
            Nonce Reuse in TLS 1.2
           The existence of deployed TLS stacks that mistakenly reuse the AES-GCM nonce is
documented in  , showing there is an actual risk of AES-GCM getting
implemented insecurely and thus making TLS sessions that use an
AES-GCM cipher suite vulnerable to attacks such as  .  (See  
records: CVE-2016-0270, CVE-2016-10213, CVE-2016-10212, and CVE-2017-5933.)
           While this problem has been fixed in TLS 1.3, which enforces a deterministic
method to generate nonces from record sequence numbers and shared secrets for
all its AEAD cipher suites (including AES-GCM), TLS 1.2 implementations
could still choose their own (potentially insecure) nonce generation methods.
           It is therefore  RECOMMENDED that TLS 1.2 implementations use the 64-bit
sequence number to populate the  nonce_explicit part of the GCM nonce, as
described in the first two paragraphs of  . This stronger recommendation updates  , which specifies that the use of 64-bit sequence numbers to populate the  nonce_explicit field is optional.
           We note that at the time of writing, there are no cipher suites defined for nonce-reuse-resistant algorithms such as AES-GCM-SIV  .
        
      
       
         Forward Secrecy
         Forward secrecy (also called "perfect forward secrecy" or "PFS" and defined in  ) is a defense against an attacker who records encrypted conversations where the session keys are only encrypted with the communicating parties' long-term keys.
         Should the attacker be able to obtain these long-term keys at some point later in time, the session keys and thus the entire conversation could be decrypted.
         In the context of TLS and DTLS, such compromise of long-term keys is not entirely implausible. It can happen, for example, due to:
         
           A client or server being attacked by some other attack vector, and the private key retrieved.
           A long-term key retrieved from a device that has been sold or otherwise decommissioned without prior wiping.
           A long-term key used on a device as a default key  .
           A key generated by a trusted third party like a CA and later retrieved from it by either extortion or compromise  .
           A cryptographic breakthrough or the use of asymmetric keys with insufficient length  .
           Social engineering attacks against system administrators.
           Collection of private keys from inadequately protected backups.
        
         Forward secrecy ensures in such cases that it is not feasible for an attacker to determine the session keys even if the attacker has obtained the long-term keys some time after the conversation. It also protects against an attacker who is in possession of the long-term keys but remains passive during the conversation.
         Forward secrecy is generally achieved by using the Diffie-Hellman scheme to derive session keys. The Diffie-Hellman scheme has both parties maintain private secrets and send parameters over the network as modular powers over certain cyclic groups. The properties of the so-called Discrete Logarithm Problem (DLP) allow the parties to derive the session keys without an eavesdropper being able to do so. There is currently no known attack against DLP if sufficiently large parameters are chosen. A variant of the Diffie-Hellman scheme uses elliptic curves instead of the originally proposed modular arithmetic. Given the current state of the art, Elliptic Curve Diffie-Hellman appears to be more efficient, permits shorter key lengths, and allows less freedom for implementation errors than finite-field Diffie-Hellman.
         Unfortunately, many TLS/DTLS cipher suites were defined that do not feature forward secrecy, e.g., TLS_RSA_WITH_AES_256_CBC_SHA256.  This document therefore advocates strict use of forward-secrecy-only ciphers.
      
       
         Diffie-Hellman Exponent Reuse
         For performance reasons, it is not uncommon for TLS implementations to reuse Diffie-Hellman and Elliptic Curve Diffie-Hellman exponents across multiple connections. Such reuse can result in major security issues:
         
           If exponents are reused for too long (in some cases, even as little as a few hours), an attacker who gains access to the host can decrypt previous connections. In other words, exponent reuse negates the effects of forward secrecy.
           TLS implementations that reuse exponents should test the DH public key they receive for group membership, in order to avoid some known attacks. These tests are not standardized in TLS at the time of writing, although general guidance in this area is provided by   and available in many protocol implementations.
           Under certain conditions, the use of static finite-field DH keys, or of ephemeral finite-field DH keys that are reused across multiple connections, can lead to timing attacks (such as those described in  ) on the shared secrets used in Diffie-Hellman key exchange.
           An "invalid curve" attack can be mounted against Elliptic Curve DH if the victim does not verify that the received point lies on the correct curve.  If the victim is reusing the DH secrets, the attacker can repeat the probe varying the points to recover the full secret (see   and  ).
        
         To address these concerns:
         
           TLS implementations  SHOULD NOT use static finite-field DH keys and  SHOULD NOT reuse ephemeral finite-field DH keys across multiple connections.
           Server implementations that want to reuse Elliptic Curve DH keys  SHOULD either use a "safe curve"   (e.g., X25519) or perform the checks described in   on the received points.
        
      
       
         Certificate Revocation
         The following considerations and recommendations represent the current state of the art regarding certificate revocation, even though no complete and efficient solution exists for the problem of checking the revocation status of common public key certificates  :
         
           Certificate revocation is an important tool when recovering from attacks on the TLS implementation as well as cases of misissued certificates. TLS implementations  MUST implement a strategy to distrust revoked certificates.
           Although Certificate Revocation Lists (CRLs) are the most widely supported mechanism for distributing revocation information, they have known scaling challenges that limit their usefulness, despite workarounds such as partitioned CRLs and delta CRLs. The more modern   and the follow-on Let's Revoke   build on the availability of Certificate Transparency   logs and aggressive compression to allow practical use of the CRL infrastructure, but at the time of writing, neither solution is deployed for client-side revocation processing at scale.
           Proprietary mechanisms that embed revocation lists in the web browser's configuration database cannot scale beyond the few most heavily used web servers.
           The Online Certification Status Protocol (OCSP)   in its basic form presents both scaling and privacy issues. In addition, clients typically "soft-fail", meaning that they do not abort the TLS connection if the OCSP server does not respond. (However, this might be a workaround to avoid denial-of-service attacks if an OCSP responder is taken offline.) For a recent survey of the status of OCSP deployment in the web PKI, see  .
           The TLS Certificate Status Request extension ( ), commonly called "OCSP stapling", resolves the operational issues with OCSP. However, it is still ineffective in the presence of an active on-path attacker because the attacker can simply ignore the client's request for a stapled OCSP response.
           
              defines a certificate extension that indicates that clients must expect stapled OCSP responses for the certificate and must abort the handshake ("hard-fail") if such a response is not available.
           OCSP stapling as used in TLS 1.2 does not extend to intermediate certificates within a certificate chain. The Multiple Certificate Status extension   addresses this shortcoming, but it has seen little deployment and had been deprecated by  . As a result, although this extension was recommended for TLS 1.2 in  , it is no longer recommended by this document.
           TLS 1.3 ( ) allows the association of OCSP information with intermediate certificates by using an extension to the CertificateEntry structure. However, using this facility remains impractical because many certification authorities (CAs) either do not publish OCSP for CA certificates or publish OCSP reports with a lifetime that is too long to be useful.
           Both CRLs and OCSP depend on relatively reliable connectivity to the Internet, which might not be available to certain kinds of nodes. A common example is newly provisioned devices that need to establish a secure connection in order to boot up for the first time.
        
         For the common use cases of public key certificates in TLS, servers  SHOULD support the following as a best practice given the current state of the art and as a foundation for a possible future solution: OCSP   and OCSP stapling using the  status_request extension defined in  . Note that the exact mechanism for embedding the  status_request extension differs between TLS 1.2 and 1.3. As a matter of local policy, server operators  MAY request that CAs issue must-staple   certificates for the server and/or for client authentication, but we recommend reviewing the operational conditions before deciding on this approach.
         The considerations in this section do not apply to scenarios where the DNS-Based
              Authentication of Named Entities (DANE) TLSA resource record   is used to signal to a client which certificate a server considers valid and good to use for TLS connections.
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             Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)
             
               
            
             
             
               This document defines a deterministic digital signature generation procedure.  Such signatures are compatible with standard Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures and can be processed with unmodified verifiers, which need not be aware of the procedure described therein.  Deterministic signatures retain the cryptographic security features associated with digital signatures but can be more easily implemented in various environments, since they do not need access to a source of high-quality randomness.
            
          
           
           
        
         
           
             Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.
            
          
           
           
        
         
           
             Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
             
               
            
             
             
               This document describes a means of negotiating the use of the encrypt-then-MAC security mechanism in place of the existing MAC-then-encrypt mechanism in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS).  The MAC-then-encrypt mechanism has been the subject of a number of security vulnerabilities over a period of many years.
            
          
           
           
        
         
           
             Prohibiting RC4 Cipher Suites
             
               
            
             
             
               This document requires that Transport Layer Security (TLS) clients and servers never negotiate the use of RC4 cipher suites when they establish connections.  This applies to all TLS versions.  This document updates RFCs 5246, 4346, and 2246.
            
          
           
           
        
         
           
             Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Transport Layer Security (TLS) master secret is not cryptographically bound to important session parameters such as the server certificate.  Consequently, it is possible for an active attacker to set up two sessions, one with a client and another with a server, such that the master secrets on the two sessions are the same.  Thereafter, any mechanism that relies on the master secret for authentication, including session resumption, becomes vulnerable to a man-in-the-middle attack, where the attacker can simply forward messages back and forth between the client and server.  This specification defines a TLS extension that contextually binds the master secret to a log of the full handshake that computes it, thus preventing such attacks.
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               This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS).  These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier
             
               
            
             
               
            
             
               
            
             
             
               This document describes key exchange algorithms based on Elliptic Curve Cryptography (ECC) for the Transport Layer Security (TLS) protocol.  In particular, it specifies the use of Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key agreement in a TLS handshake and the use of the Elliptic Curve Digital Signature Algorithm (ECDSA) and Edwards-curve Digital Signature Algorithm (EdDSA) as authentication mechanisms.
               This document obsoletes RFC 4492.
            
          
           
           
        
         
           
             The Transport Layer Security (TLS) Protocol Version 1.3
             
               
            
             
             
               This document specifies version 1.3 of the Transport Layer Security (TLS) protocol.  TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
               This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961.  This document also specifies new requirements for TLS 1.2 implementations.
            
          
           
           
        
         
           
             Deprecating TLS 1.0 and TLS 1.1
             
               
            
             
               
            
             
             
               This document formally deprecates Transport Layer Security (TLS) versions 1.0 (RFC 2246) and 1.1 (RFC 4346). Accordingly, those documents have been moved to Historic status. These versions lack support for current and recommended cryptographic algorithms and mechanisms, and various government and industry profiles of applications using TLS now mandate avoiding these old TLS versions. TLS version 1.2 became the recommended version for IETF protocols in 2008 (subsequently being obsoleted by TLS version 1.3 in 2018), providing sufficient time to transition away from older versions. Removing support for older versions from implementations reduces the attack surface, reduces opportunity for misconfiguration, and streamlines library and product maintenance. 
               This document also deprecates Datagram TLS (DTLS) version 1.0 (RFC 4347) but not DTLS version 1.2, and there is no DTLS version 1.1.
               This document updates many RFCs that normatively refer to TLS version 1.0 or TLS version 1.1, as described herein. This document also updates the best practices for TLS usage in RFC 7525; hence, it is part of BCP 195.
            
          
           
           
           
        
         
           
             The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
             
               
            
             
               
            
             
               
            
             
             
               This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
               The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability.  Datagram semantics of the underlying transport are preserved by the DTLS protocol.
               This document obsoletes RFC 6347.
            
          
           
           
        
         
           
             Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2
             
               
            
             
               
            
             
               
            
             
             
               The MD5 and SHA-1 hashing algorithms are increasingly vulnerable to attack, and this document deprecates their use in TLS 1.2 and DTLS 1.2 digital signatures. However, this document does not deprecate SHA-1 with Hashed Message Authentication Code (HMAC), as used in record protection. This document updates RFC 5246.
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               This document specifies Version 1.0 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.
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               This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants.  These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences.  [STANDARDS-TRACK]
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               This document describes the use of the Advanced Encryption Standard (AES) Cipher Algorithm in Cipher Block Chaining (CBC) Mode, with an explicit Initialization Vector (IV), as a confidentiality mechanism within the context of the IPsec Encapsulating Security Payload (ESP).
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               This document specifies Version 1.1 of the Transport Layer Security (TLS) protocol.  The TLS protocol provides communications security over the Internet.  The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.
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               This document specifies Version 1.0 of the Datagram Transport Layer Security (DTLS) protocol.  The DTLS protocol provides communications privacy for datagram protocols.  The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.  The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees.  Datagram semantics of the underlying transport are preserved by the DTLS protocol.
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               This Glossary provides definitions, abbreviations, and explanations of terminology for information system security. The 334 pages of entries offer recommendations to improve the comprehensibility of written material that is generated in the Internet Standards Process (RFC 2026). The recommendations follow the principles that such writing should (a) use the same term or definition whenever the same concept is mentioned; (b) use terms in their plainest, dictionary sense; (c) use terms that are already well-established in open publications; and (d) avoid terms that either favor a particular vendor or favor a particular technology or mechanism over other, competing techniques that already exist or could be developed.  This memo provides information for the Internet community.
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               This document describes a mechanism that enables the Transport Layer Security (TLS) server to resume sessions and avoid keeping per-client session state.  The TLS server encapsulates the session state into a ticket and forwards it to the client.  The client can subsequently resume a session using the obtained ticket.  This document obsoletes RFC 4507.  [STANDARDS-TRACK]
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               This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms.  The interface and registry can be used as an application-independent set of cryptoalgorithm suites.  This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations.  [STANDARDS-TRACK]
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               This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet.  An overview of this approach and model is provided as an introduction.  The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms.  Standard certificate extensions are described and two Internet-specific extensions are defined.  A set of required certificate extensions is specified.  The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions.  An algorithm for X.509 certification path validation is described.  An ASN.1 module and examples are provided in the appendices.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Simple Mail Transfer Protocol
             
               
            
             
             
               This document is a specification of the basic protocol for Internet electronic mail transport.  It consolidates, updates, and clarifies several previous documents, making all or parts of most of them obsolete.  It covers the SMTP extension mechanisms and best practices for the contemporary Internet, but does not provide details about particular extensions.  Although SMTP was designed as a mail transport and delivery protocol, this specification also contains information that is important to its use as a "mail submission" protocol for "split-UA" (User Agent) mail reading systems and mobile environments.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             The Secure Sockets Layer (SSL) Protocol Version 3.0
             
               
            
             
               
            
             
               
            
             
             
               This document is published as a historical record of the SSL 3.0 protocol.  The original Abstract follows.
               This document specifies version 3.0 of the Secure Sockets Layer (SSL 3.0) protocol, a security protocol that provides communications privacy over the Internet.  The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.  This document defines a  Historic Document for the Internet community.
            
          
           
           
        
         
           
             Extensible Messaging and Presence Protocol (XMPP): Core
             
               
            
             
             
               The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities.  This document defines XMPP's core protocol methods: setup and teardown of XML streams, channel encryption, authentication, error handling, and communication primitives for messaging, network availability ("presence"), and request-response interactions.  This document obsoletes RFC 3920.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA
             
               
            
             
               
            
             
             
               Encrypted communication on the Internet often uses Transport Layer Security (TLS), which depends on third parties to certify the keys used.  This document improves on that situation by enabling the administrators of domain names to specify the keys used in that domain's TLS servers.  This requires matching improvements in TLS client software, but no change in TLS server software.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             HTTP Strict Transport Security (HSTS)
             
               
            
             
               
            
             
               
            
             
             
               This specification defines a mechanism enabling web sites to declare themselves accessible only via secure connections and/or for users to be able to direct their user agent(s) to interact with given sites only over secure connections.  This overall policy is referred to as HTTP Strict Transport Security (HSTS).  The policy is declared by web sites via the Strict-Transport-Security HTTP response header field and/or by other means, such as user agent configuration, for example. [STANDARDS-TRACK]
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               This document specifies a protocol useful in determining the current status of a digital certificate without requiring Certificate Revocation Lists (CRLs). Additional mechanisms addressing PKIX operational requirements are specified in separate documents.  This document obsoletes RFCs 2560 and 6277.  It also updates RFC 5912.
            
          
           
           
        
         
           
             The Transport Layer Security (TLS) Multiple Certificate Status Request Extension
             
               
            
             
             
               This document defines the Transport Layer Security (TLS) Certificate Status Version 2 Extension to allow clients to specify and support several certificate status methods.  (The use of the Certificate Status extension is commonly referred to as "OCSP stapling".)  Also defined is a new method based on the Online Certificate Status Protocol (OCSP) that servers can use to provide status information about not only the server's own certificate but also the status of intermediate certificates in the chain.
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               The Internet Protocol Suite is increasingly used on small devices with severe constraints on power, memory, and processing resources, creating constrained-node networks.  This document provides a number of basic terms that have been useful in the standardization work for constrained-node networks.
            
          
           
           
        
         
           
             Opportunistic Security: Some Protection Most of the Time
             
               
            
             
             
               This document defines the concept "Opportunistic Security" in the context of communications protocols.  Protocol designs based on Opportunistic Security use encryption even when authentication is not available, and use authentication when possible, thereby removing barriers to the widespread use of encryption on the Internet.
            
          
           
           
        
         
           
             Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)
             
               
            
             
               
            
             
               
            
             
             
               Over the last few years, there have been several serious attacks on Transport Layer Security (TLS), including attacks on its most commonly used ciphers and modes of operation.  This document summarizes these attacks, with the goal of motivating generic and protocol-specific recommendations on the usage of TLS and Datagram TLS (DTLS).
            
          
           
           
        
         
           
             TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol Downgrade Attacks
             
               
            
             
               
            
             
             
               This document defines a Signaling Cipher Suite Value (SCSV) that prevents protocol downgrade attacks on the Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) protocols.  It updates RFCs 2246, 4346, 4347, 5246, and 6347.  Server update considerations are included.
            
          
           
           
        
         
           
             Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
             
               
            
             
               
            
             
               
            
             
             
               Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP.  Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation.  This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.
            
          
           
           
           
        
         
           
             Deprecating Secure Sockets Layer Version 3.0
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Secure Sockets Layer version 3.0 (SSLv3), as specified in RFC 6101, is not sufficiently secure.  This document requires that SSLv3 not be used.  The replacement versions, in particular, Transport Layer Security (TLS) 1.2 (RFC 5246), are considerably more secure and capable protocols.
               This document updates the backward compatibility section of RFC 5246 and its predecessors to prohibit fallback to SSLv3.
            
          
           
           
        
         
           
             Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)
             
               
            
             
               
            
             
             
               This document provides recommendations for the use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP).  This document updates RFC 6120.
            
          
           
           
        
         
           
             X.509v3 Transport Layer Security (TLS) Feature Extension
             
               
            
             
             
               The purpose of the TLS feature extension is to prevent downgrade attacks that are not otherwise prevented by the TLS protocol.  In particular, the TLS feature extension may be used to mandate support for revocation checking features in the TLS protocol such as Online Certificate Status Protocol (OCSP) stapling.  Informing clients that an OCSP status response will always be stapled permits an immediate failure in the case that the response is not stapled.  This in turn prevents a denial-of-service attack that might otherwise be possible.
            
          
           
           
        
         
           
             SMTP Security via Opportunistic DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)
             
               
            
             
               
            
             
             
               This memo describes a downgrade-resistant protocol for SMTP transport security between Message Transfer Agents (MTAs), based on the DNS-Based Authentication of Named Entities (DANE) TLSA DNS record. Adoption of this protocol enables an incremental transition of the Internet email backbone to one using encrypted and authenticated Transport Layer Security (TLS).
            
          
           
           
        
         
           
             Using DNS-Based Authentication of Named Entities (DANE) TLSA Records with SRV Records
             
               
            
             
               
            
             
               
            
             
             
               The DNS-Based Authentication of Named Entities (DANE) specification (RFC 6698) describes how to use TLSA resource records secured by DNSSEC (RFC 4033) to associate a server's connection endpoint with its Transport Layer Security (TLS) certificate (thus enabling administrators of domain names to specify the keys used in that domain's TLS servers).  However, application protocols that use SRV records (RFC 2782) to indirectly name the target server connection endpoints for a service domain name cannot apply the rules from RFC 6698.  Therefore, this document provides guidelines that enable such protocols to locate and use TLSA records.
            
          
           
           
        
         
           
             Domain Name Associations (DNA) in the Extensible Messaging and Presence Protocol (XMPP)
             
               
            
             
               
            
             
               
            
             
             
               This document improves the security of the Extensible Messaging and Presence Protocol (XMPP) in two ways.  First, it specifies how to establish a strong association between a domain name and an XML stream, using the concept of "prooftypes".  Second, it describes how to securely delegate a service domain name (e.g., example.com) to a target server hostname (e.g., hosting.example.net); this is especially important in multi-tenanted environments where the same target server hosts a large number of domains.
            
          
           
           
        
         
           
             Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS)
             
               
            
             
             
               Traditional finite-field-based Diffie-Hellman (DH) key exchange during the Transport Layer Security (TLS) handshake suffers from a number of security, interoperability, and efficiency shortcomings. These shortcomings arise from lack of clarity about which DH group parameters TLS servers should offer and clients should accept.  This document offers a solution to these shortcomings for compatible peers by using a section of the TLS "Supported Groups Registry" (renamed from "EC Named Curve Registry" by this document) to establish common finite field DH parameters with known structure and a mechanism for peers to negotiate support for these groups.
               This document updates TLS versions 1.0 (RFC 2246), 1.1 (RFC 4346), and 1.2 (RFC 5246), as well as the TLS Elliptic Curve Cryptography (ECC) extensions (RFC 4492).
            
          
           
           
        
         
           
             Transport Layer Security (TLS) Cached Information Extension
             
               
            
             
               
            
             
             
               Transport Layer Security (TLS) handshakes often include fairly static information, such as the server certificate and a list of trusted certification authorities (CAs).  This information can be of considerable size, particularly if the server certificate is bundled with a complete certificate chain (i.e., the certificates of intermediate CAs up to the root CA).
               This document defines an extension that allows a TLS client to inform a server of cached information, thereby enabling the server to omit already available information.
            
          
           
           
        
         
           
             Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things
             
               
            
             
               
            
             
             
               A common design pattern in Internet of Things (IoT) deployments is the use of a constrained device that collects data via sensors or controls actuators for use in home automation, industrial control systems, smart cities, and other IoT deployments.
               This document defines a Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) 1.2 profile that offers communications security for this data exchange thereby preventing eavesdropping, tampering, and message forgery.  The lack of communication security is a common vulnerability in IoT products that can easily be solved by using these well-researched and widely deployed Internet security protocols.
            
          
           
           
        
         
           
             AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption
             
               
            
             
               
            
             
               
            
             
             
               This memo specifies two authenticated encryption algorithms that are nonce misuse resistant -- that is, they do not fail catastrophically if a nonce is repeated.
               This document is the product of the Crypto Forum Research Group.
            
          
           
           
        
         
           
             SMTP MTA Strict Transport Security (MTA-STS)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               SMTP MTA Strict Transport Security (MTA-STS) is a mechanism enabling mail service providers (SPs) to declare their ability to receive Transport Layer Security (TLS) secure SMTP connections and to specify whether sending SMTP servers should refuse to deliver to MX hosts that do not offer TLS with a trusted server certificate.
            
          
           
           
        
         
           
             Using Early Data in HTTP
             
               
            
             
               
            
             
               
            
             
             
               Using TLS early data creates an exposure to the possibility of a replay attack.  This document defines mechanisms that allow clients to communicate with servers about HTTP requests that are sent in early data.  Techniques are described that use these mechanisms to mitigate the risk of replay.
            
          
           
           
        
         
           
             TLS Certificate Compression
             
               
            
             
               
            
             
             
               In TLS handshakes, certificate chains often take up the majority of the bytes transmitted.
               This document describes how certificate chains can be compressed to reduce the amount of data transmitted and avoid some round trips.
            
          
           
           
        
         
           
             QUIC: A UDP-Based Multiplexed and Secure Transport
             
               
            
             
               
            
             
             
               This document defines the core of the QUIC transport protocol.  QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances.  Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.
            
          
           
           
        
         
           
             Using TLS to Secure QUIC
             
               
            
             
               
            
             
             
               This document describes how Transport Layer Security (TLS) is used to secure QUIC.
            
          
           
           
        
         
           
             Internet Message Access Protocol (IMAP) - Version 4rev2
             
               
            
             
               
            
             
             
               The Internet Message Access Protocol Version 4rev2 (IMAP4rev2) allows a client to access and manipulate electronic mail messages on a server.  IMAP4rev2 permits manipulation of mailboxes (remote message folders) in a way that is functionally equivalent to local folders.  IMAP4rev2 also provides the capability for an offline client to resynchronize with the server. 
               IMAP4rev2 includes operations for creating, deleting, and renaming mailboxes; checking for new messages; removing messages permanently; setting and clearing flags; parsing per RFCs 5322, 2045, and 2231; searching; and selective fetching of message attributes, texts, and portions thereof.  Messages in IMAP4rev2 are accessed by the use of numbers. These numbers are either message sequence numbers or unique identifiers. 
               IMAP4rev2 does not specify a means of posting mail; this function is handled by a mail submission protocol such as the one specified in RFC 6409.
            
          
           
           
        
         
           
             HTTP Semantics
             
               
            
             
               
            
             
               
            
             
             
               The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes. 
               This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.
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               The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document specifies the HTTP/1.1 message syntax, message parsing, connection management, and related security concerns. 
               This document obsoletes portions of RFC 7230.
            
          
           
           
           
        
         
           
             HTTP/2
             
               
            
             
               
            
             
             
               This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced latency by introducing field compression and allowing multiple concurrent exchanges on the same connection.
               This document obsoletes RFCs 7540 and 8740.
            
          
           
           
        
         
           
             Certificate Transparency Version 2.0
             
               
            
             
               
            
             
               
            
             
             
               This document describes version 2.0 of the Certificate Transparency (CT) protocol for publicly logging the existence of Transport Layer Security (TLS) server certificates as they are issued or observed, in a manner that allows anyone to audit certification authority (CA) activity and notice the issuance of suspect certificates as well as to audit the certificate logs themselves. The intent is that eventually clients would refuse to honor certificates that do not appear in a log, effectively forcing CAs to add all issued certificates to the logs.
               This document obsoletes RFC 6962.  It also specifies a new TLS extension that is used to send various CT log artifacts.
               Logs are network services that implement the protocol operations for submissions and queries that are defined in this document.
            
          
           
           
        
         
           
             Handling Large Certificates and Long Certificate Chains in TLS-Based EAP Methods
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             SafeCurves: choosing safe curves for elliptic-curve cryptography
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                  This document describes a mechanism in Transport Layer Security (TLS)
   for encrypting a ClientHello message under a server public key.

Discussion Venues

   This note is to be removed before publishing as an RFC.

   Source for this draft and an issue tracker can be found at
   https://github.com/tlswg/draft-ietf-tls-esni
   (https://github.com/tlswg/draft-ietf-tls-esni).
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       Differences from RFC 7525
       This revision of the Best Current Practices contains numerous changes, and this section is focused
on the normative changes.
       
         
           High-level differences:
          
           
             Described the expectations from new TLS-incorporating transport protocols and from new application protocols layered on TLS.
             Clarified items (e.g., renegotiation) that only apply to TLS 1.2.
             Changed the status of TLS 1.0 and 1.1 from " SHOULD NOT" to " MUST NOT".
             Added TLS 1.3 at a " SHOULD" level.
             Made similar changes to DTLS.
             Included specific guidance for multiplexed protocols.
             
               MUST-level implementation requirement for ALPN and more specific  SHOULD-level guidance for ALPN and SNI.
             Clarified discussion of strict TLS policies, including  MUST-level recommendations.
             Limits on key usage.
             New attacks since  : ALPACA, Raccoon, Logjam, and "Nonce-Disrespecting Adversaries".
             RFC 6961 (OCSP status_request_v2) has been deprecated.
             
               MUST-level requirement for server-side RSA certificates to have a 2048-bit modulus at a minimum, replacing a " SHOULD".
          
        
         
           Differences specific to TLS 1.2:
          
           
             
               SHOULD-level guidance on AES-GCM nonce generation.
             
               SHOULD NOT use (static or ephemeral) finite-field DH key agreement.
             
               SHOULD NOT reuse ephemeral finite-field DH keys across multiple connections.
             
               SHOULD NOT use static Elliptic Curve DH key exchange.
             2048-bit DH is now a " MUST" and ECDH minimal curve size is 224 (vs. 192 previously).
             Support for  extended_master_secret is now a " MUST" (previously it was a soft recommendation, as the RFC had not been published at the time). Also removed other, more complicated, related mitigations.
             
               MUST-level restriction on session ticket validity, replacing a " SHOULD".
             
               SHOULD-level restriction on the TLS session duration, depending on the rotation period of an   ticket key.
             Dropped TLS_DHE_RSA_WITH_AES from the recommended ciphers.
             Added TLS_ECDHE_ECDSA_WITH_AES to the recommended ciphers.
             
               SHOULD NOT use the old MTI cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA.
             Recommended curve X25519 alongside NIST P-256.
          
        
         
           Differences specific to TLS 1.3:
          
           
             New TLS 1.3 capabilities: 0-RTT.
             Removed capabilities: renegotiation and compression.
             Added mention of TLS Encrypted Client Hello, but no recommendation for use until it is finalized.
             
               SHOULD-level requirement for forward secrecy in TLS 1.3 session resumption.
             Generic  MUST-level guidance to avoid 0-RTT unless it is documented for the particular protocol.
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