
RFC 9140
Nimble Out-of-Band Authentication for EAP
(EAP‑NOOB)

Abstract
The Extensible Authentication Protocol (EAP) provides support for multiple authentication
methods. This document defines the EAP-NOOB authentication method for nimble out-of-band
(OOB) authentication and key derivation. The EAP method is intended for bootstrapping all kinds
of Internet-of-Things (IoT) devices that have no preconfigured authentication credentials. The
method makes use of a user-assisted, one-directional, out-of-band (OOB) message between the
peer device and authentication server to authenticate the in-band key exchange. The device must
have a nonnetwork input or output interface, such as a display, microphone, speaker, or blinking
light, that can send or receive dynamically generated messages of tens of bytes in length.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9140
Standards Track
December 2021
2070-1721

 T. Aura
Aalto University

M. Sethi
Ericsson

A. Peltonen
Aalto University

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9140

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Aura, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9140
https://www.rfc-editor.org/info/rfc9140

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. EAP-NOOB Method

3.1. Protocol Overview

3.2. Protocol Messages and Sequences

3.2.1. Common Handshake in All EAP-NOOB Exchanges

3.2.2. Initial Exchange

3.2.3. OOB Step

3.2.4. Completion Exchange

3.2.5. Waiting Exchange

3.3. Protocol Data Fields

3.3.1. Peer Identifier and NAI

3.3.2. Message Data Fields

3.4. Fast Reconnect and Rekeying

3.4.1. Persistent EAP-NOOB Association

3.4.2. Reconnect Exchange

3.4.3. User Reset

3.5. Key Derivation

3.6. Error Handling

3.6.1. Invalid Messages

3.6.2. Unwanted Peer

3.6.3. State Mismatch

3.6.4. Negotiation Failure

3.6.5. Cryptographic Verification Failure

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

3.6.6. Application-Specific Failure

4. ServerInfo and PeerInfo Contents

5. IANA Considerations

5.1. Cryptosuites

5.2. Message Types

5.3. Error Codes

5.4. ServerInfo Data Fields

5.5. PeerInfo Data Fields

5.6. Domain Name Reservation

5.7. Guidance for Designated Experts

6. Security Considerations

6.1. Authentication Principle

6.2. Identifying Correct Endpoints

6.3. Trusted Path Issues and Misbinding Attacks

6.4. Peer Identifiers and Attributes

6.5. Downgrading Threats

6.6. Protected Success and Failure Indications

6.7. Channel Binding

6.8. Denial of Service

6.9. Recovery from Loss of Last Message

6.10. Privacy Considerations

6.11. EAP Security Claims

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Exchanges and Events per State

Appendix B. Application-Specific Parameters

Appendix C. EAP-NOOB Roaming

Appendix D. OOB Message as a URL

Acknowledgments

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 3

Authors' Addresses

1. Introduction
This document describes a method for registration, authentication, and key derivation for
network-connected smart devices, such as consumer and enterprise appliances that are part of
the Internet of Things (IoT). These devices may be off-the-shelf hardware that is sold and
distributed without any prior registration or credential-provisioning process, or they may be
recycled devices after a hard reset. Thus, the device registration in a server database, ownership
of the device, and the authentication credentials for both network access and application-level
security must all be established at the time of the device deployment. Furthermore, many such
devices have only limited user interfaces that could be used for their configuration. Often, the
user interfaces are limited to either only input (e.g., a camera) or output (e.g., a display screen).
The device configuration is made more challenging by the fact that the devices may exist in large
numbers and may have to be deployed or reconfigured nimbly based on user needs.

To summarize, devices may have the following characteristics:

no preestablished relation with the intended server or user,
no preprovisioned device identifier or authentication credentials, or
an input or output interface that may be capable of only one-directional out-of-band
communication.

Many proprietary out-of-band (OOB) configuration methods exist for specific IoT devices. The
goal of this specification is to provide an open standard and a generic protocol for bootstrapping
the security of network-connected appliances, such as displays, printers, speakers, and cameras.
The security bootstrapping in this specification makes use of a user-assisted OOB channel. The
device authentication relies on a user having physical access to the device, and the key exchange
security is based on the assumption that attackers are not able to observe or modify the messages
conveyed through the OOB channel. We follow the common approach taken in pairing protocols:
performing a Diffie-Hellman key exchange over the insecure network and authenticating the
established key with the help of the OOB channel in order to prevent impersonation attacks.

The solution presented here is intended for devices that have either a nonnetwork input or output
interface, such as a camera, microphone, display screen, speaker, or blinking Light Emitting
Diode (LED) light, that is able to send or receive dynamically generated messages of tens of bytes
in length. Naturally, this solution may not be appropriate for very small sensors or actuators that
have no user interface at all or for devices that are inaccessible to the user. We also assume that
the OOB channel is at least partly automated (e.g., a camera scanning a bar code); thus, there is
no need to absolutely minimize the length of the data transferred through the OOB channel. This
differs, for example, from Bluetooth pairing , where it is essential to minimize the
length of the manually transferred or compared codes. The OOB messages in this specification
are dynamically generated. Thus, we do not support static printed registration codes. One reason

•
•
•

[Bluetooth]

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 4

for requiring dynamic OOB messages is that the receipt of the OOB message authorizes the server
to take ownership of the device. Dynamic OOB messages are more secure than static printed
codes, which could be leaked and later misused.

2. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

In addition, this document frequently uses the following terms as they have been defined in
:

authenticator
The entity initiating EAP authentication.

peer
The entity that responds to the authenticator. In , this entity is known as the
supplicant. (We use the terms peer, device, and peer device interchangeably.)

server
The entity that terminates the EAP authentication method with the peer. In the case where
no backend authentication server is used, the EAP server is part of the authenticator. In the
case where the authenticator operates in pass-through mode, the EAP server is located on
the backend authentication server.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5216]

[IEEE-802.1X]

3. EAP-NOOB Method
This section defines the EAP-NOOB method. The protocol is a generalized version of the original
idea presented by .Sethi et al. [Sethi14]

3.1. Protocol Overview
One EAP-NOOB method execution spans two or more EAP conversations, called Exchanges in this
specification. Each Exchange consists of several EAP request-response pairs. At least two separate
EAP conversations are needed to give the human user time to deliver the OOB message between
them.

The overall protocol starts with the Initial Exchange, which comprises four EAP request-response
pairs. In the Initial Exchange, the server allocates an identifier to the peer, and the server and
peer negotiate the protocol version and cryptosuite (i.e., cryptographic algorithm suite), exchange
nonces, and perform an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key exchange. The
user-assisted OOB Step then takes place. This step requires only one out-of-band message, either
from the peer to the server or from the server to the peer. While waiting for the OOB Step action,
the peer probe the server by reconnecting to it with EAP-NOOB. If the OOB Step has alreadyMAY

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 5

taken place, the probe leads to the Completion Exchange, which completes the mutual
authentication and key confirmation. On the other hand, if the OOB Step has not yet taken place,
the probe leads to the Waiting Exchange, and the peer will perform another probe after a server-
defined minimum waiting time. The Initial Exchange and Waiting Exchange always end in EAP-
Failure, while the Completion Exchange may result in EAP-Success. Once the peer and server have
performed a successful Completion Exchange, both endpoints store the created association in
persistent storage, and the OOB Step is not repeated. Thereafter, creation of new temporal keys,
ECDHE rekeying, and updates of cryptographic algorithms can be achieved with the Reconnect
Exchange.

Figure 1 shows the association state machine, which is the same for the server and for the peer.
(For readability, only the main state transitions are shown. The complete table of transitions can
be found in Appendix A.) When the peer initiates the EAP-NOOB method, the server chooses the
ensuing message exchange based on the combination of the server and peer states. The EAP

Figure 1: EAP-NOOB Server-Peer Association State Machine

 OOB Output/Initial Exchange/
 Waiting Exchange
 .-----.
 | v
 .------------------. Initial .------------------.
 | | Exchange | |
 .->| Unregistered (0) |---------------->|Waiting for OOB(1)|
 | | (ephemeral) | | (ephemeral) |
 | | | | |
 | '------------------' '------------------'
 | | | ^
 User Reset Completion | | |
 | Exchange | OOB OOB
 |<-------. .-------------------------' Input Reject/
 | | | | Initial
 | | | | Exchange
 | | v v |
 | .------------------. Completion .------------------.
		Exchange	
	Registered (4)	<----------------	OOB Received (2)
	(persistent)		(ephemeral)
'------------------' '------------------'			
	^		
Mobility/			
Timeout/ Reconnect			
Failure Exchange			
v			
.------------------.			
 '--| Reconnecting (3) |
 | (persistent) |
 | |
 '------------------'

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 6

server and peer are initially in the Unregistered (0) state, in which no state information needs to
be stored. Before a successful Completion Exchange, the server-peer association state is
ephemeral in both the server and peer (ephemeral states 0..2), and a timeout or error may cause
one or both endpoints to go back to the Unregistered (0) state so that the Initial Exchange is
repeated. After the Completion Exchange has resulted in EAP-Success, the association state
becomes persistent (persistent states 3..4). Only user reset or memory failure can cause the return
of the server or the peer from the persistent states to the ephemeral states and to the Initial
Exchange.

The server repeat a successful OOB Step with the same peer except if the association
with the peer is explicitly reset by the user or lost due to failure of the persistent storage in the
server. More specifically, once the association has entered the Registered (4) state, the server

 delete the association or go back to the ephemeral states 0..2 without explicit user
approval. Similarly, the peer repeat the OOB Step unless the user explicitly deletes the
association with the server from the peer or resets the peer to the Unregistered (0) state. The
server and peer implement user reset of the association by deleting the state data from that
endpoint. If an endpoint continues to store data about the association after the user reset, its
behavior be equivalent to having deleted the association data.

It can happen that the peer accidentally (or through user reset) loses its persistent state and
reconnects to the server without a previously allocated peer identifier. In that case, the server

 treat the peer as a new peer. The server use auxiliary information, such as the PeerInfo
field received in the Initial Exchange, to detect multiple associations with the same peer.
However, it delete or merge redundant associations without user or application
approval because EAP-NOOB internally has no secure way of verifying that the two peers are the
same physical device. Similarly, the server might lose the association state because of a memory
failure or user reset. In that case, the only way to recover is that the user also resets the peer.

A special feature of the EAP-NOOB method is that the server is not assumed to have any a priori
knowledge of the peer. Therefore, the peer initially uses the generic identity string "noob@eap-
noob.arpa" as its Network Access Identifier (NAI). The server then allocates a server-specific
identifier to the peer. The generic NAI serves two purposes: firstly, it tells the server that the peer
supports and expects the EAP-NOOB method; secondly, it allows routing of the EAP-NOOB sessions
to a specific authentication server in an Authentication, Authorization, and Accounting (AAA)
architecture.

EAP-NOOB is an unusual EAP method in that the peer has to have multiple EAP conversations
with the server before it can receive EAP-Success. The reason is that, while EAP allows delays
between the request-response pairs, e.g., for repeated password entry, the user delays in OOB
authentication can be much longer than in password trials. Moreover, EAP-NOOB supports peers
with no input capability in the user interface (e.g., LED light bulbs). Since users cannot initiate the
protocol in these devices, the devices have to perform the Initial Exchange opportunistically and
hope for the OOB Step to take place within a timeout period (NoobTimeout), which is why the
timeout needs to be several minutes rather than seconds. To support such high-latency OOB
channels, the peer and server perform the Initial Exchange in one EAP conversation, then allow
time for the OOB message to be delivered, and later perform the Waiting Exchange and
Completion Exchange in different EAP conversations.

MUST NOT

MUST NOT
MUST NOT

MAY

MUST

MUST MAY

MUST NOT

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 7

3.2. Protocol Messages and Sequences
This section defines the EAP-NOOB exchanges, which correspond to EAP conversations. The
exchanges start with a common handshake, which determines the type of the following
exchange. The common handshake messages and the subsequent messages for each exchange
type are listed in the diagrams below. The diagrams also specify the data fields present in each
message. Each exchange comprises multiple EAP request-response pairs and ends in either EAP-
Failure, indicating that authentication is not (yet) successful, or in EAP-Success.

3.2.1. Common Handshake in All EAP-NOOB Exchanges

All EAP-NOOB exchanges start with common handshake messages. The handshake begins with
the identity request and response that are common to all EAP methods. Their purpose is to enable
the AAA architecture to route the EAP conversation to the EAP server and to enable the EAP server
to select the EAP method. The handshake then continues with one EAP-NOOB request-response
pair in which the server discovers the peer identifier used in EAP-NOOB and the peer state.

In more detail, each EAP-NOOB exchange begins with the authenticator sending an EAP-Request/
Identity packet to the peer. From this point on, the EAP conversation occurs between the server
and the peer, and the authenticator acts as a pass-through device. The peer responds to the
authenticator with an EAP-Response/Identity packet, which contains the Network Access
Identifier (NAI). The authenticator, acting as a pass-through device, forwards this response and
the following EAP conversation between the peer and the AAA architecture. The AAA architecture
routes the conversation to a specific AAA server (called "EAP server" or simply "server" in this
specification) based on the realm part of the NAI. The server selects the EAP-NOOB method based
on the user part of the NAI, as defined in Section 3.3.1.

After receiving the EAP-Response/Identity message, the server sends the first EAP-NOOB request
(Type=1) to the peer, which responds with the peer identifier (PeerId) and state (PeerState) in the
range 0..3. However, the peer omit the PeerId from the response (Type=1) when
PeerState=0. The server then chooses the EAP-NOOB exchange, i.e., the ensuing message sequence,
as explained below. The peer recognizes the exchange based on the message type field (Type) of
the next EAP-NOOB request received from the server.

The server determine the exchange type based on the combination of the peer and server
states as follows (also summarized in Table 14). If either the peer or server is in the Unregistered
(0) state and the other is in one of the ephemeral states (0..2), the server chooses the Initial
Exchange. If either the peer or server is in the OOB Received (2) state and the other is either in the
Waiting for OOB (1) or OOB Received (2) state, the OOB Step has taken place and the server
chooses the Completion Exchange. If both the server and peer are in the Waiting for OOB (1) state,
the server chooses the Waiting Exchange. If the peer is in the Reconnecting (3) state and the
server is in the Registered (4) or Reconnecting (3) state, the server chooses the Reconnect
Exchange. All other state combinations are error situations where user action is required, and the
server indicate such errors to the peer with the error code 2002 (see Section 3.6.3). Note
also that the peer initiate EAP-NOOB when the peer is in the Registered (4) state.

SHOULD

MUST

SHOULD
MUST NOT

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 8

Figure 2: Common Handshake in All EAP-NOOB Exchanges

EAP Peer Authenticator EAP Server
 | | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=noob@eap-noob.arpa) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=1) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=1,[PeerId],PeerState=1) |
 | |
 | continuing with exchange-specific messages... |

3.2.2. Initial Exchange

The Initial Exchange comprises the common handshake and two further EAP-NOOB request-
response pairs: one for version, cryptosuite, and parameter negotiation and the other for the
ECDHE key exchange. The first EAP-NOOB request (Type=2) from the server contains a newly
allocated PeerId for the peer and an optional NewNAI for assigning a new NAI to the peer. The
server allocates a new PeerId in the Initial Exchange regardless of any old PeerId received in the
previous response (Type=1). The server also sends in the request a list of the protocol versions
(Vers) and cryptosuites (Cryptosuites) it supports, an indicator of the OOB channel directions it
supports (Dirs), and a ServerInfo object. The peer chooses one of the versions and cryptosuites.
The peer sends a response (Type=2) with the selected protocol version (Verp), the received PeerId,
the selected cryptosuite (Cryptosuitep), an indicator of the OOB channel direction(s) selected by
the peer (Dirp), and a PeerInfo object. In the second EAP-NOOB request and response (Type=3),
the server and peer exchange the public components of their ECDHE keys and nonces (PKs, Ns,
PKp, and Np). The ECDHE keys be based on the negotiated cryptosuite, i.e., Cryptosuitep. The
Initial Exchange always ends with EAP-Failure from the server because the authentication cannot
yet be completed.

MUST

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 9

At the conclusion of the Initial Exchange, both the server and the peer move to the Waiting for
OOB (1) state.

Figure 3: Initial Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=2,Vers,PeerId,[NewNAI], |
 | Cryptosuites,Dirs,ServerInfo) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=2,Verp,PeerId,Cryptosuitep, |
 | Dirp,PeerInfo) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=3,PeerId,PKs,Ns,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=3,PeerId,PKp,Np) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

3.2.3. OOB Step

The OOB Step, labeled as OOB Output and OOB Input in Figure 1, takes place after the Initial
Exchange. Depending on the negotiated OOB channel direction, the peer or the server outputs the
OOB message as shown in Figures 4 or 5, respectively. The data fields are the PeerId, the secret
nonce Noob, and the cryptographic fingerprint Hoob. The contents of the data fields are defined
in Section 3.3.2. The OOB message is delivered to the other endpoint via a user-assisted OOB
channel.

For brevity, we will use the terms OOB sender and OOB receiver in addition to the already familiar
EAP server and EAP peer. If the OOB message is sent in the server-to-peer direction, the OOB
sender is the server and the OOB receiver is the peer. On the other hand, if the OOB message is
sent in the peer-to-server direction, the OOB sender is the peer and the OOB receiver is the server.

Figure 4: OOB Step, from Peer to EAP Server

EAP Peer EAP Server
 | |
 |=================OOB=============================>|
 | (PeerId,Noob,Hoob) |
 | |

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 10

The OOB receiver compare the received value of the fingerprint Hoob (see Section 3.3.2)
with a value that it computed locally for the PeerID received. This integrity check ensures that the
endpoints agree on contents of the Initial Exchange. If the values are equal, the receiver moves to
the OOB Received (2) state. Otherwise, the receiver reject the OOB message. For usability
reasons, the OOB receiver indicate the acceptance or rejection of the OOB message to the
user. The receiver reject invalid OOB messages without changing its state in the
association state machine until an application-specific number of invalid messages (OobRetries)
has been reached; after which, the receiver consider it an error and go back to the
Unregistered (0) state.

The server or peer send multiple OOB messages with different Noob values while in the
Waiting for OOB (1) state. The OOB sender remember the Noob values until they expire
and accept any one of them in the following Completion Exchange. The Noob values sent by the
server expire after an application-dependent timeout (NoobTimeout), and the server
accept Noob values older than that in the Completion Exchange. The value for
NoobTimeout is 3600 seconds if there are no application-specific reasons for making it shorter or
longer. The Noob values sent by the peer expire, as defined in Section 3.2.5.

The OOB receiver does not accept further OOB messages after it has accepted one and moved to
the OOB Received (2) state. However, the receiver buffer redundant OOB messages in case an
OOB message expiry or similar error detected in the Completion Exchange causes it to return to
the Waiting for OOB (1) state. It is that the OOB receiver notifies the user about
redundant OOB messages, but it instead discard them silently.

The sender will typically generate a new Noob, and therefore a new OOB message, at constant
time intervals (NoobInterval). The interval is

NoobInterval = NoobTimeout / 2

in which case, the receiver of the OOB will at any given time accept either of the two latest Noob
values. However, the timing of the Noob generation may also be based on user interaction or on
implementation considerations.

Even though not recommended (see Section 3.3), this specification allows both directions to be
negotiated (Dirp=3) for the OOB channel. In that case, both sides output the OOB
message, and it is up to the user to deliver at least one of them.

The details of the OOB channel implementation including the message encoding are defined by
the application. Appendix D gives an example of how the OOB message can be encoded as a URL
that may be embedded in a dynamic QR code or NFC (Near Field Communication) tag.

Figure 5: OOB Step, from EAP Server to Peer

EAP Peer EAP Server
 | |
 |<================OOB==============================|
 | (PeerId,Noob,Hoob) |
 | |

MUST

MUST
SHOULD

SHOULD

SHOULD

MAY
SHOULD

MUST NOT
RECOMMENDED

MAY

RECOMMENDED
MAY

RECOMMENDED

SHOULD

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 11

3.2.4. Completion Exchange

After the Initial Exchange, if the OOB channel directions selected by the peer include the peer-to-
server direction, the peer initiate the EAP-NOOB method again after an applications-
specific waiting time in order to probe for completion of the OOB Step. If the OOB channel
directions selected by the peer include the server-to-peer direction and the peer receives the OOB
message, it initiate the EAP-NOOB method immediately. Depending on the combination
of the peer and server states, the server continues with the Completion Exchange or Waiting
Exchange (see Section 3.2.1 on how the server makes this decision).

The Completion Exchange comprises the common handshake and one or two further EAP-NOOB
request-response pairs. If the peer is in the Waiting for OOB (1) state, the OOB message has been
sent in the peer-to-server direction. In that case, only one request-response pair (Type=6) takes
place. In the request, the server sends the NoobId value (see Section 3.3.2), which the peer uses to
identify the exact OOB message received by the server. On the other hand, if the peer is in the OOB
Received (2) state, the direction of the OOB message is from server to peer. In this case, two
request-response pairs (Type=5 and Type=6) are needed. The purpose of the first request-response
pair (Type=5) is that it enables the server to discover NoobId, which identifies the exact OOB
message received by the peer. The server returns the same NoobId to the peer in the latter request.

In the last request-response pair (Type=6) of the Completion Exchange, the server and peer
exchange message authentication codes. Both sides compute the keys Kms and Kmp, as
defined in Section 3.5, and the message authentication codes MACs and MACp, as defined in
Section 3.3.2. Both sides compare the received message authentication code with a locally
computed value. If the peer finds that it has received the correct value of MACs and the server
finds that it has received the correct value of MACp, the Completion Exchange ends in EAP-
Success. Otherwise, the endpoint where the comparison fails indicates this with an error message
(error code 4001, see Section 3.6.5), and the Completion Exchange ends in EAP-Failure.

After the successful Completion Exchange, both the server and the peer move to the Registered (4)
state. They also derive the output keying material and store the persistent EAP-NOOB association
state, as defined in Sections 3.4 and 3.5.

It is possible that the OOB message expires before it is received. In that case, the sender of the OOB
message no longer recognizes the NoobId that it receives in the Completion Exchange. Another
reason why the OOB sender might not recognize the NoobId is if the received OOB message was
spoofed and contained an attacker-generated Noob value. The recipient of an unrecognized
NoobId indicates this with an error message (error code 2003, see Section 3.6.1), and the
Completion Exchange ends in EAP-Failure. The recipient of the error message 2003 moves back to
the Waiting for OOB (1) state. This state transition is called OOB Reject in Figure 1 (even though it
really is a specific type of failed Completion Exchange). On the other hand, the sender of the error
message stays in its previous state.

SHOULD

SHOULD

MUST

MUST

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 12

Although it is not expected to occur in practice, poor user interface design could lead to two OOB
messages delivered simultaneously, one from the peer to the server and the other from the server
to the peer. The server detects this event in the beginning of the Completion Exchange by
observing that both the server and peer are in the OOB Received (2) state. In that case, as a
tiebreaker, the server behave as if only the server-to-peer message had been delivered.MUST

Figure 6: Completion Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- [EAP-Request/EAP-NOOB] ------------|
 | (Type=5,PeerId) |
 | |
 | |
 |------------ [EAP-Response/EAP-NOOB] ---------->|
 | (Type=5,PeerId,NoobId) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=6,PeerId,NoobId,MACs) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=6,PeerId,MACp) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

3.2.5. Waiting Exchange

As explained in Section 3.2.4, the peer probe the server for completion of the OOB Step.
When the combination of the peer and server states indicates that the OOB message has not yet
been delivered, the server chooses the Waiting Exchange (see Section 3.2.1 on how the server
makes this decision). The Waiting Exchange comprises the common handshake and one further
request-response pair, and it always ends in EAP-Failure.

In order to limit the rate at which peers probe the server, the server send to the peer either in
the Initial Exchange or in the Waiting Exchange a minimum time to wait before probing the
server again. A peer that has not received an OOB message wait at least the server-
specified minimum waiting time in seconds (SleepTime) before initiating EAP again with the
same server. The peer uses the latest SleepTime value that it has received in or after the Initial
Exchange. If the server has not sent any SleepTime value, the peer wait for an application-
specified minimum time (SleepTimeDefault).

SHOULD

MAY

SHOULD

MUST

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 13

After the Waiting Exchange, the peer discard (from its local ephemeral storage) Noob values
that it has sent to the server in OOB messages that are older than the application-defined timeout
NoobTimeout (see Section 3.2.3). The peer discard such expired Noob values even if the
probing failed because of, e.g., failure to connect to the EAP server or an incorrect message
authentication code. The timeout of peer-generated Noob values is defined like this in order to
allow the peer to probe the server once after it has waited for the server-specified SleepTime.

If the server and peer have negotiated to use only the server-to-peer direction for the OOB
channel (Dirp=2), the peer nevertheless probe the server. The purpose of this is to keep
the server informed about the peers that are still waiting for OOB messages. The server set
SleepTime to a high number (e.g., 3600) to prevent the peer from probing the server frequently.

MUST

SHOULD

SHOULD
MAY

Figure 7: Waiting Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=4,PeerId,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=4,PeerId) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

3.3. Protocol Data Fields
This section defines the various identifiers and data fields used in the EAP-NOOB method.

3.3.1. Peer Identifier and NAI

The server allocates a new peer identifier (PeerId) for the peer in the Initial Exchange. The peer
identifier follow the syntax of the utf8-username specified in . The server
generate the identifiers in such a way that they do not repeat and cannot be guessed by the peer
or third parties before the server sends them to the peer in the Initial Exchange. One way to
generate the identifiers is to choose a random 16-byte identifier and to base64url encode it
without padding into a 22-character ASCII string. Another way to generate the
identifiers is to choose a random 22-character alphanumeric ASCII string. It is to
not use identifiers longer than this because they result in longer OOB messages.

The peer uses the allocated PeerId to identify itself to the server in the subsequent exchanges. The
peer copy the PeerId byte by byte from the message where it was allocated, and the server

 perform a byte-by-byte comparison between the received and the previously allocated
PeerID. The peer sets the PeerId value in response type 1 as follows. As stated in Section 3.2.1, when
the peer is in the Unregistered (0) state, it omit the PeerId from response type 1. When the
peer is in one of the states 1..2, it use the PeerId that the server assigned to it in the latest

MUST [RFC7542] MUST

[RFC4648]
RECOMMENDED

MUST
MUST

SHOULD
MUST

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 14

Initial Exchange. When the peer is in one of the persistent states 3..4, it use the PeerId from
its persistent EAP-NOOB association. (The PeerId is written to the association when the peer
moves to the Registered (4) state after a Completion Exchange.)

The default NAI for the peer is "noob@eap-noob.arpa". The peer implementation allow the
user or application to configure a different NAI, which overrides the default NAI. Furthermore, the
server assign a new NAI to the peer in the Initial Exchange or Reconnect Exchange in the
NewNAI field of request types 2 and 7 to override any previous NAI value. When the peer is in the
Unregistered (0) state, or when the peer is in one of the states 1..2 and the server did not send a
NewNAI in the latest Initial Exchange, the peer use the configured NAI or, if it does not exist,
the default NAI. When the peer is in one of the states 1..2 and the server sent a NewNAI in the
latest Initial Exchange, the peer use this server-assigned NAI. When the peer moves to the
Registered (4) state after the Completion Exchange, it writes to the persistent EAP-NOOB
association the same NAI value that it used in the Completion Exchange. When the peer is in the
Reconnecting (3) or Registered (4) state, it use the NAI from its persistent EAP-NOOB
association. When the server sends NewNAI in the Reconnect Exchange, the peer writes its value
to the persistent EAP-NOOB association when it moves from the Reconnecting (3) state to the
Registered (4) state. All the NAI values follow the syntax specified in .

The purpose of the server-assigned NAI is to enable more flexible routing of the EAP sessions over
the AAA infrastructure, including roaming scenarios (see Appendix C). Moreover, some
authenticators or AAA servers use the realm part of the assigned NAI to determine peer-specific
connection parameters, such as isolating the peer to a specific VLAN. On the other hand, the user-
or application-configured NAI enables registration of new devices while roaming. It also enables
manufacturers to set up their own AAA servers for bootstrapping of new peer devices.

The peer's PeerId and server-assigned NAI are ephemeral until a successful Completion Exchange
takes place. Thereafter, the values become parts of the persistent EAP-NOOB association until the
user resets the peer and server or until a new NAI is assigned in the Reconnect Exchange.

MUST

MAY

MAY

MUST

MUST

MUST

MUST [RFC7542]

3.3.2. Message Data Fields

Table 1 defines the data fields in the protocol messages. The in-band messages are formatted as
JSON objects in UTF-8 encoding. The JSON member names are in the left-hand column
of the table.

[RFC8259]

Data Field Description

Vers, Verp EAP-NOOB protocol versions supported by the EAP server and the protocol
version chosen by the peer. Vers is a JSON array of unsigned integers, and
Verp is an unsigned integer. Example values are "[1]" and "1", respectively.

PeerId Peer identifier, as defined in Section 3.3.1.

NAI, NewNAI Peer NAI and server-assigned new peer NAI, as defined in Section 3.3.1.

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 15

Data Field Description

Type EAP-NOOB message type. The type is an integer in the range 0..9. EAP-NOOB
requests and the corresponding responses share the same type value.

PeerState Peer state is an integer in the range 0..4 (see Figure 1). However, only values
0..3 are ever sent in the protocol messages.

PKs, PKp The public components of the ECDHE keys of the server and peer. PKs and
PKp are sent in the JSON Web Key (JWK) format . The detailed
format of the JWK object is defined by the cryptosuite.

Cryptosuites,
Cryptosuitep

The identifiers of cryptosuites supported by the server and of the cryptosuite
selected by the peer. The server-supported cryptosuites in Cryptosuites are
formatted as a JSON array of the identifier integers. The server send a
nonempty array with no repeating elements, ordered by decreasing priority.
The peer respond with exactly one suite in the Cryptosuitep value,
formatted as an identifier integer. Mandatory-to-implement cryptosuites
and the registration procedure for new cryptosuites are specified in Section
5.1. Example values are "[1]" and "1", respectively.

Dirs, Dirp An integer indicating the OOB channel directions supported by the server
and the directions selected by the peer. The possible values are 1=peer-to-
server, 2=server-to-peer, and 3=both directions.

Dir The actual direction of the OOB message (1=peer-to-server, 2=server-to-peer).
This value is not sent over any communication channel, but it is included in
the computation of the cryptographic fingerprint Hoob.

Ns, Np 32-byte nonces for the Initial Exchange.

ServerInfo This field contains information about the server to be passed from the EAP
method to the application layer in the peer. The information is specific to the
application or to the OOB channel, and it is encoded as a JSON object of at
most 500 bytes. It could include, for example, the access-network name and
server name, a Uniform Resource Locator (URL) , or some other
information that helps the user deliver the OOB message to the server
through the out-of-band channel.

PeerInfo This field contains information about the peer to be passed from the EAP
method to the application layer in the server. The information is specific to
the application or to the OOB channel, and it is encoded as a JSON object of
at most 500 bytes. It could include, for example, the peer brand, model, and
serial number, which help the user distinguish between devices and deliver
the OOB message to the correct peer through the out-of-band channel.

[RFC7517]

MUST

MUST

[RFC3986]

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 16

Data Field Description

SleepTime The number of seconds for which the peer start a new execution
of the EAP-NOOB method with the authenticator, unless the peer receives the
OOB message or the sending is triggered by an application-specific user
action. The server can use this field to limit the rate at which peers probe it.
SleepTime is an unsigned integer in the range 0..3600.

Noob 16-byte secret nonce sent through the OOB channel and used for the session
key derivation. The endpoint that received the OOB message uses this secret
in the Completion Exchange to authenticate the exchanged key to the
endpoint that sent the OOB message.

Hoob 16-byte cryptographic fingerprint (i.e., hash value) computed from all the
parameters exchanged in the Initial Exchange and in the OOB message.
Receiving this fingerprint over the OOB channel guarantees the integrity of
the key exchange and parameter negotiation. Hence, it authenticates the
exchanged key to the endpoint that receives the OOB message.

NoobId 16-byte identifier for the OOB message, computed with a one-way function
from the nonce Noob in the message.

MACs, MACp Message authentication codes (HMAC) for mutual authentication, key
confirmation, and integrity check on the exchanged information. The input
to the HMAC is defined below, and the key for the HMAC is defined in Section
3.5.

Ns2, Np2 32-byte nonces for the Reconnect Exchange.

KeyingMode Integer indicating the key derivation method. 0 in the Completion Exchange,
and 1..3 in the Reconnect Exchange.

PKs2, PKp2 The public components of the ECDHE keys of the server and peer for the
Reconnect Exchange. PKp2 and PKs2 are sent in the JSON Web Key (JWK)
format . The detailed format of the JWK object is defined by the
cryptosuite.

MACs2,
MACp2

Message authentication codes (HMAC) for mutual authentication, key
confirmation, and integrity check on the Reconnect Exchange. The input to
the HMAC is defined below, and the key for the HMAC is defined in Section
3.5.

ErrorCode Integer indicating an error condition. Defined in Section 5.3.

ErrorInfo Textual error message for logging and debugging purposes. A UTF-8 string of
at most 500 bytes.

Table 1: Message Data Fields

MUST NOT

[RFC7517]

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 17

It is for servers to support both OOB channel directions (Dirs=3) unless the type of
the OOB channel limits them to one direction (Dirs=1 or Dirs=2). On the other hand, it is

 that the peer selects only one direction (Dirp=1 or Dirp=2) even when both
directions (Dirp=3) would be technically possible. The reason is that, if value 3 is negotiated, the
user may be presented with two OOB messages, one for each direction, even though only one of
them needs to be delivered. This can be confusing to the user. Nevertheless, the EAP-NOOB
protocol is designed to also cope with the value 3; in which case, it uses the first delivered OOB
message. In the unlikely case of simultaneously delivered OOB messages, the protocol prioritizes
the server-to-peer direction.

The nonces in the in-band messages (Ns, Np, Ns2, Np2) are 32-byte fresh random byte strings, and
the secret nonce Noob is a 16-byte fresh random byte string. All the nonces are generated by the
endpoint that sends the message.

The fingerprint Hoob and the identifier NoobId are computed with the cryptographic hash
function H, which is specified in the negotiated cryptosuite and truncated to the 16 leftmost bytes
of the output. The message authentication codes (MACs, MACp, MACs2, MACp2) are computed
with the function HMAC, which is the hashed message authentication code based on
the cryptographic hash function H and truncated to the 32 leftmost bytes of the output.

The inputs to the hash function for computing the fingerprint Hoob and to the HMAC for
computing MACs, MACp, MACs2, and MACp2 are JSON arrays containing a fixed number (17) of
elements. The array elements be copied to the array verbatim from the sent and received
in-band messages. When the element is a JSON object, its members be reordered or
reencoded. White space be added anywhere in the JSON structure. Implementers
should check that their JSON library copies the elements as UTF-8 strings, does not modify them in
any way, and does not add white space to the HMAC input.

The inputs for computing the fingerprint and message authentication codes are the following:

RECOMMENDED

RECOMMENDED

[RFC2104]

MUST
MUST NOT

MUST NOT

Hoob = H(Dir,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

NoobId = H("NoobId",Noob).

MACs = HMAC(Kms; 2,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

MACp = HMAC(Kmp; 1,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

MACs2 = HMAC(Kms2; 2,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo],
Cryptosuitep,"",NAI,[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],Np2,"")

MACp2 = HMAC(Kmp2; 1,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo],
Cryptosuitep,"",NAI,[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],Np2,"")

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 18

The inputs denoted with "" above are not present, and the values in brackets [] are optional. Both
kinds of missing input values are represented by empty strings "" in the HMAC input (JSON array).
The NAI included in the inputs is the NAI value that will be in the persistent EAP-NOOB association
if the Completion Exchange or Reconnect Exchange succeeds. In the Completion Exchange, the
NAI is the NewNAI value assigned by the server in the preceding Initial Exchange or, if no NewNAI
was sent, the NAI used by the client in the Initial Exchange. In the Reconnect Exchange, the NAI is
the NewNAI value assigned by the server in the same Reconnect Exchange or, if no NewNAI was
sent, the unchanged NAI from the persistent EAP-NOOB association. Each of the values in
brackets for the computation of Macs2 and Macp2 be included if it was sent or received in
the same Reconnect Exchange; otherwise, the value is replaced by an empty string "".

The parameter Dir indicates the direction in which the OOB message containing the Noob value is
being sent (1=peer-to-server, 2=server-to-peer). This field is included in the Hoob input to prevent
the user from accidentally delivering the OOB message back to its originator in the rare cases
where both OOB directions have been negotiated. The keys (Kms, Kmp, Kms2, and Kmp2) for the
HMACs are defined in Section 3.5.

The nonces (Ns, Np, Ns2, Np2, and Noob) and the hash value (NoobId) be base64url encoded
 when they are used as input to the cryptographic functions H or HMAC. These values

and the message authentication codes (MACs, MACp, MACs2, and MACp2) also be base64url
encoded when they are sent as JSON strings in the in-band messages. The values Noob and Hoob
in the OOB channel be base64url encoded if that is appropriate for the application and the
OOB channel. All base64url encoding is done without padding. The base64url-encoded values will
naturally consume more space than the number of bytes specified above (e.g., a 22-character
string for a 16-byte nonce and a 43-character string for a 32-byte nonce or message
authentication code). In the key derivation in Section 3.5, on the other hand, the unencoded
nonces (raw bytes) are used as input to the key derivation function.

The ServerInfo and PeerInfo are JSON objects with UTF-8 encoding. The length of either encoded
object as a byte array exceed 500 bytes. The format and semantics of these objects

 be defined by the application that uses the EAP-NOOB method.

MUST

MUST
[RFC4648]

MUST

MAY

MUST NOT
MUST

3.4. Fast Reconnect and Rekeying
EAP-NOOB implements fast reconnect (), which avoids repeated use of the
user-assisted OOB channel.

The rekeying and the Reconnect Exchange may be needed for several reasons. New EAP output
values Main Session Key (MSK) and Extended Main Session Key (EMSK) may be needed because
of mobility or timeout of session keys. Software or hardware failure or user action may also cause
the authenticator, EAP server, or peer to lose its nonpersistent state data. The failure would
typically be detected by the peer or authenticator when session keys are no longer accepted by
the other endpoint. Changes in the supported cryptosuites in the EAP server or peer may also
cause the need for a new key exchange. When the EAP server or peer detects any one of these
events, it change from the Registered (4) state to the Reconnecting (3) state. These state
transitions are labeled Mobility/Timeout/Failure in Figure 1. The EAP-NOOB method will then
perform the Reconnect Exchange the next time when EAP is triggered.

[RFC3748], Section 7.2.1

MUST

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc3748#section-7.2.1

3.4.1. Persistent EAP-NOOB Association

To enable rekeying, the EAP server and peer store the session state in persistent memory after a
successful Completion Exchange. This state data, called "persistent EAP-NOOB association",
include at least the data fields shown in Table 2. They are used for identifying and authenticating
the peer in the Reconnect Exchange. When a persistent EAP-NOOB association exists, the EAP
server and peer are in the Registered (4) state or Reconnecting (3) state, as shown in Figure 1.

MUST

Data Field Value Type

PeerId Peer identifier allocated by server UTF-8 string (typically
22 ASCII characters)

Verp Negotiated protocol version integer

Cryptosuitep Negotiated cryptosuite integer

CryptosuitepPrev (at
peer only)

Previous cryptosuite integer

NAI NAI assigned by the server or configured
by the user or the default NAI "noob@eap-
noob.arpa"

UTF-8 string

Kz Persistent key material 32 bytes

KzPrev (at peer only) Previous Kz value 32 bytes

Table 2: Persistent EAP-NOOB Association

3.4.2. Reconnect Exchange

The server chooses the Reconnect Exchange when both the peer and the server are in a persistent
state and fast reconnection is needed (see Section 3.2.1 for details).

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 20

The Reconnect Exchange comprises the common handshake and three further EAP-NOOB
request-response pairs: one for cryptosuite and parameter negotiation, another for the nonce
and ECDHE key exchange, and the last one for exchanging message authentication codes. In the
first request and response (Type=7), the server and peer negotiate a protocol version and
cryptosuite in the same way as in the Initial Exchange. The server offer and the peer

 accept protocol versions or cryptosuites that it knows to be weaker than the one
currently in the Cryptosuitep field of the persistent EAP-NOOB association. The server

 needlessly change the cryptosuites it offers to the same peer because peer devices may have
limited ability to update their persistent storage. However, if the peer has different values in the
Cryptosuitep and CryptosuitepPrev fields, it also accept offers that are not weaker than
CryptosuitepPrev. Note that Cryptosuitep and CryptosuitePrev from the persistent EAP-NOOB
association are only used to support the negotiation as described above; all actual cryptographic
operations use the newly negotiated cryptosuite. The request and response (Type=7)
additionally contain PeerInfo and ServerInfo objects.

The server then determines the KeyingMode (defined in Section 3.5) based on changes in the
negotiated cryptosuite and whether it desires to achieve forward secrecy or not. The server

 only select KeyingMode 3 when the negotiated cryptosuite differs from the Cryptosuitep
in the server's persistent EAP-NOOB association, although it is technically possible to select this
value without changing the cryptosuite. In the second request and response (Type=8), the server
informs the peer about the KeyingMode and the server and peer exchange nonces (Ns2, Np2).
When KeyingMode is 2 or 3 (rekeying with ECDHE), they also exchange public components of
ECDHE keys (PKs2, PKp2). The server ECDHE key be fresh, i.e., not previously used with the
same peer, and the peer ECDHE key be fresh, i.e., not previously used.

In the third and final request and response (Type=9), the server and peer exchange message
authentication codes. Both sides compute the keys Kms2 and Kmp2, as defined in Section
3.5, and the message authentication codes MACs2 and MACp2, as defined in Section 3.3.2. Both
sides compare the received message authentication code with a locally computed value.

The rules by which the peer compares the received MACs2 are nontrivial because, in addition to
authenticating the current exchange, MACs2 may confirm the success or failure of a recent
cryptosuite upgrade. The peer processes the final request (Type=9) as follows:

The peer first compares the received MACs2 value with one it computed using the Kz stored in
the persistent EAP-NOOB association. If the received and computed values match, the peer
deletes any data stored in the CryptosuitepPrev and KzPrev fields of the persistent EAP-NOOB
association. It does this because the received MACs2 confirms that the peer and server share
the same Cryptosuitep and Kz, and any previous values must no longer be accepted.
On the other hand, if the peer finds that the received MACs2 value does not match the one it
computed locally with Kz, the peer checks whether the KzPrev field in the persistent EAP-
NOOB association stores a key. If it does, the peer repeats the key derivation (Section 3.5) and
local MACs2 computation (Section 3.3.2) using KzPrev in place of Kz. If this second computed
MACs2 matches the received value, the match indicates synchronization failure caused by
the loss of the last response (Type=9) in a previously attempted cryptosuite upgrade. In this
case, the peer rolls back that upgrade by overwriting Cryptosuitep with CryptosuitepPrev and

SHOULD NOT
MUST NOT

SHOULD
NOT

SHOULD

MAY

SHOULD

MUST
SHOULD

MUST

MUST

1.

2.

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 21

Kz with KzPrev in the persistent EAP-NOOB association. It also clears the CryptosuitepPrev
and KzPrev fields.
If the received MACs2 matched one of the locally computed values, the peer proceeds to send
the final response (Type=9). The peer also moves to the Registered (4) state. When
KeyingMode is 1 or 2, the peer stops here. When KeyingMode is 3, the peer also updates the
persistent EAP-NOOB association with the negotiated Cryptosuitep and the newly derived Kz
value. To prepare for possible synchronization failure caused by the loss of the final response
(Type=9) during cryptosuite upgrade, the peer copies the old Cryptosuitep and Kz values in the
persistent EAP-NOOB association to the CryptosuitepPrev and KzPrev fields.
Finally, if the peer finds that the received MACs2 does not match either of the two values that
it computed locally (or one value if no KzPrev was stored), the peer sends an error message
(error code 4001, see Section 3.6.5), which causes the Reconnect Exchange to end in EAP-
Failure.

The server rules for processing the final message are simpler than the peer rules because the
server does not store previous keys and it never rolls back a cryptosuite upgrade. Upon receiving
the final response (Type=9), the server compares the received value of MACp2 with one it
computes locally. If the values match, the Reconnect Exchange ends in EAP-Success. When
KeyingMode is 3, the server also updates Cryptosuitep and Kz in the persistent EAP-NOOB
association. On the other hand, if the server finds that the values do not match, it sends an error
message (error code 4001), and the Reconnect Exchange ends in EAP-Failure.

The endpoints send updated NewNAI, ServerInfo, and PeerInfo objects in the Reconnect
Exchange. When there is no update to the values, they omit this information from the
messages. If the NewNAI was sent, each side updates NAI in the persistent EAP-NOOB association
when moving to the Registered (4) state.

3.

4.

MAY
SHOULD

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 22

Figure 8: Reconnect Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=7,Vers,PeerId,Cryptosuites, |
 | [NewNAI],[ServerInfo]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=7,Verp,PeerId,Cryptosuitep,[PeerInfo])|
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=8,PeerId,KeyingMode,[PKs2],Ns2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=8,PeerId,[PKp2],Np2) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=9,PeerId,MACs2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=9,PeerId,MACp2) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

3.4.3. User Reset

As shown in the association state machine in Figure 1, the only specified way for the association
to return from the Registered (4) state to the Unregistered (0) state is through user-initiated reset.
After the reset, a new OOB message will be needed to establish a new association between the EAP
server and peer. Typical situations in which the user reset is required are when the other side has
accidentally lost the persistent EAP-NOOB association data or when the peer device is
decommissioned.

The server could detect that the peer is in the Registered or Reconnecting state, but the server
itself is in one of the ephemeral states 0..2 (including situations where the server does not
recognize the PeerId). In this case, effort should be made to recover the persistent server state, for
example, from a backup storage -- especially if many peer devices are similarly affected. If that is
not possible, the EAP server log the error or notify an administrator. The only way to
continue from such a situation is by having the user reset the peer device.

On the other hand, if the peer is in any of the ephemeral states 0..2, including the Unregistered
state, the server will treat the peer as a new peer device and allocate a new PeerId to it. The
PeerInfo can be used by the user as a clue to which physical device has lost its state. However,
there is no secure way of matching the "new" peer with the old PeerId without repeating the OOB
Step. This situation will be resolved when the user performs the OOB Step and thus identifies the

SHOULD

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 23

physical peer device. The server user interface support situations where the "new" peer is
actually a previously registered peer that has been reset by a user or otherwise lost its persistent
data. In those cases, the user could choose to merge the new peer identity with the old one in the
server. The alternative is to treat the device just like a new peer.

MAY

3.5. Key Derivation
EAP-NOOB derives the EAP output values MSK and EMSK and other secret keying material from
the output of an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) algorithm following the NIST
specification . In NIST terminology, we use a C(2e, 0s, ECC CDH) scheme, i.e., two
ephemeral keys and no static keys. In the Initial Exchange and Reconnect Exchange, the server
and peer compute the ECDHE shared secret Z, as defined in Section 6.1.2 of the NIST specification

. In the Completion Exchange and Reconnect Exchange, the server and peer compute
the secret keying material from Z with the one-step key derivation function (KDF) defined in
Section 5.8.2.1 of the NIST specification. The auxiliary function H is a hash function, and it is taken
from the negotiated cryptosuite.

The key derivation has four different modes (KeyingMode), which are specified in Table 3. Table 4
defines the inputs to KDF in each KeyingMode.

In the Completion Exchange (KeyingMode=0), the input Z comes from the preceding Initial
exchange. The KDF takes some additional inputs (FixedInfo), for which we use the concatenation
format defined in Section 5.8.2.1.1 of the NIST specification . FixedInfo consists of the
AlgorithmId, PartyUInfo, PartyVInfo, and SuppPrivInfo fields. The first three fields are fixed-
length bit strings, and SuppPrivInfo is a variable-length string with a one-byte Datalength
counter. AlgorithmId is the fixed-length, 8-byte ASCII string "EAP-NOOB". The other input values
are the server and peer nonces. In the Completion Exchange, the inputs also include the secret
nonce Noob from the OOB message.

In the simplest form of the Reconnect Exchange (KeyingMode=1), fresh nonces are exchanged,
but no ECDHE keys are sent. In this case, input Z to the KDF is replaced with the shared key Kz
from the persistent EAP-NOOB association. The result is rekeying without the computational cost
of the ECDHE exchange but also without forward secrecy.

[NIST-DH]

[NIST-DH]

KeyingMode Description

0 Completion Exchange (always with ECDHE)

1 Reconnect Exchange, rekeying without ECDHE

2 Reconnect Exchange, rekeying with ECHDE, no change in cryptosuite

3 Reconnect Exchange, rekeying with ECDHE, new cryptosuite negotiated

Table 3: Keying Modes

[NIST-DH]

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 24

When forward secrecy is desired in the Reconnect Exchange (KeyingMode=2 or KeyingMode=3),
both nonces and ECDHE keys are exchanged. Input Z is the fresh shared secret from the ECDHE
exchange with PKs2 and PKp2. The inputs also include the shared secret Kz from the persistent
EAP-NOOB association. This binds the rekeying output to the previously authenticated keys.

KeyingMode KDF input
field

Value Length
(bytes)

0 Completion Z ECDHE shared secret
from PKs and PKp

variable

AlgorithmId "EAP-NOOB" 8

PartyUInfo Np 32

PartyVInfo Ns 32

SuppPubInfo (not allowed)

SuppPrivInfo Noob 16

1 Reconnect, rekeying without
ECDHE

Z Kz 32

AlgorithmId "EAP-NOOB" 8

PartyUInfo Np2 32

PartyVInfo Ns2 32

SuppPubInfo (not allowed)

SuppPrivInfo (null) 0

2 or 3 Reconnect, rekeying, with
ECDHE, same or new cryptosuite

Z ECDHE shared secret
from PKs2 and PKp2

variable

AlgorithmId "EAP-NOOB" 8

PartyUInfo Np2 32

PartyVInfo Ns2 32

SuppPubInfo (not allowed)

SuppPrivInfo Kz 32

Table 4: Key Derivation Input

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 25

Table 5 defines how the output bytes of the KDF are used. In addition to the EAP output values
MSK and EMSK, the server and peer derive another shared secret key AMSK (Application Main
Session Key), which be used for application-layer security. Further output bytes are used
internally by EAP-NOOB for the message authentication keys (Kms, Kmp, Kms2, and Kmp2).

The Completion Exchange (KeyingMode=0) produces the shared secret Kz, which the server and
peer store in the persistent EAP-NOOB association. When a new cryptosuite is negotiated in the
Reconnect Exchange (KeyingMode=3), it similarly produces a new Kz. In that case, the server and
peer update both the cryptosuite and Kz in the persistent EAP-NOOB association. Additionally, the
peer stores the previous Cryptosuitep and Kz values in the CryptosuitepPrev and KzPrev fields of
the persistent EAP-NOOB association.

MAY

KeyingMode KDF output
bytes

Used as Length
(bytes)

0 Completion 0..63 MSK 64

64..127 EMSK 64

128..191 AMSK 64

192..223 MethodId 32

224..255 Kms 32

256..287 Kmp 32

288..319 Kz 32

1 or 2 Reconnect, rekeying without ECDHE, or with
ECDHE and unchanged cryptosuite

0..63 MSK 64

64..127 EMSK 64

128..191 AMSK 64

192..223 MethodId 32

224..255 Kms2 32

256..287 Kmp2 32

3 Reconnect, rekeying with ECDHE, new
cryptosuite

0..63 MSK 64

64..127 EMSK 64

128..191 AMSK 64

192..223 MethodId 32

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 26

Finally, every EAP method must export a Server-Id, Peer-Id, and Session-Id . In EAP-
NOOB, the exported Peer-Id is the PeerId that the server has assigned to the peer. The exported
Server-Id is a zero-length string (i.e., null string) because EAP-NOOB neither knows nor assigns
any server identifier. The exported Session-Id is created by concatenating the one-byte Type-Code
0x38 (decimal value 56) with the MethodId, which is obtained from the KDF output, as shown in
Table 5.

KeyingMode KDF output
bytes

Used as Length
(bytes)

224..255 Kms2 32

256..287 Kmp2 32

288..319 Kz 32

Table 5: Key Derivation Output

[RFC5247]

3.6. Error Handling
Various error conditions in EAP-NOOB are handled by sending an error notification message
(Type=0) instead of a next EAP request or response message. Both the EAP server and the peer
may send the error notification, as shown in Figures 9 and 10. After sending or receiving an error
notification, the server send an EAP-Failure (as required by). The
notification contain an ErrorInfo field, which is a UTF-8-encoded text string with a
maximum length of 500 bytes. It is used for sending descriptive information about the error for
logging and debugging purposes.

MUST [RFC3748], Section 4.2
MAY

Figure 9: Error Notification from Server to Peer

EAP Peer EAP Server

 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc3748#section-4.2

After the exchange fails due to an error notification, the server and peer set the association state
as follows. In the Initial Exchange, both the sender and recipient of the error notification
set the association state to the Unregistered (0) state. In the Waiting Exchange and Completion
Exchange, each side remain in its old state as if the failed exchange had not taken place,
with the exception that the recipient of error code 2003 processes it as specified in Section 3.2.4. In
the Reconnect Exchange, both sides set the association state to the Reconnecting (3) state.

Errors that occur in the OOB channel are not explicitly notified in-band.

Figure 10: Error Notification from Peer to Server

EAP Peer EAP Server

 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

MUST

MUST

MUST

3.6.1. Invalid Messages

If the NAI structure is invalid, the server send the error code 1001 to the peer. The
recipient of an EAP-NOOB request or response send the following error codes back to the
sender: 1002 if it cannot parse the message as a JSON object or the top-level JSON object has
missing or unrecognized members; 1003 if a data field has an invalid value, such as an integer out
of range, and there is no more specific error code available; 1004 if the received message type was
unexpected in the current state; 2004 if the PeerId has an unexpected value; 2003 if the NoobId is
not recognized; and 1005 if the ECDHE key is invalid.

SHOULD
SHOULD

3.6.2. Unwanted Peer

The preferred way for the EAP server to rate limit EAP-NOOB connections from a peer is to use the
SleepTime parameter in the Waiting Exchange. However, if the EAP server receives repeated EAP-
NOOB connections from a peer that apparently should not connect to this server, the server
indicate that the connections are unwanted by sending the error code 2001. After receiving this
error message, the peer refrain from reconnecting to the same EAP server, and, if possible,
both the EAP server and peer indicate this error condition to the user or server
administrator. However, in order to avoid persistent denial of service, peer devices that are
unable to alert a user continue to try to reconnect infrequently (e.g., approximately
every 3600 seconds).

MAY

MAY
SHOULD

SHOULD

3.6.3. State Mismatch

In the states indicated by "-" in Table 14 in Appendix A, user action is required to reset the
association state or to recover it, for example, from backup storage. In those cases, the server
sends the error code 2002 to the peer. If possible, both the EAP server and peer indicate
this error condition to the user or server administrator.

SHOULD

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 28

3.6.4. Negotiation Failure

If there is no matching protocol version, the peer sends the error code 3001 to the server. If there is
no matching cryptosuite, the peer sends the error code 3002 to the server. If there is no matching
OOB direction, the peer sends the error code 3003 to the server.

In practice, there is no way of recovering from these errors without software or hardware
changes. If possible, both the EAP server and peer indicate these error conditions to the
user.

SHOULD

3.6.5. Cryptographic Verification Failure

If the receiver of the OOB message detects an unrecognized PeerId or incorrect fingerprint
(Hoob) in the OOB message, the receiver remain in the Waiting for OOB (1) state as if no
OOB message was received. The receiver indicate the failure to accept the OOB message
to the user. No in-band error message is sent.

Note that if the OOB message was delivered from the server to the peer and the peer does not
recognize the PeerId, the likely cause is that the user has unintentionally delivered the OOB
message to the wrong peer device. If possible, the peer indicate this to the user; however,
the peer device may not have the capability for many different error indications to the user, and
it use the same indication as in the case of an incorrect fingerprint.

The rationale for the above is that the invalid OOB message could have been presented to the
receiver by mistake or intentionally by a malicious party; thus, it should be ignored in the hope
that the honest user will soon deliver a correct OOB message.

If the EAP server or peer detects an incorrect message authentication code (MACs, MACp, MACs2,
or MACp2), it sends the error code 4001 to the other side. As specified in the beginning of Section
3.6, the failed Completion Exchange will not result in server or peer state changes, while an error
in the Reconnect Exchange will put both sides to the Reconnecting (3) state and thus lead to
another reconnect attempt.

The rationale for this is that the invalid cryptographic message may have been spoofed by a
malicious party; thus, it should be ignored. In particular, a spoofed message on the in-band
channel should not force the honest user to perform the OOB Step again. In practice, however, the
error may be caused by other failures, such as a software bug. For this reason, the EAP server
limit the rate of peer connections with SleepTime after the above error. Also, there be a
way for the user to reset the peer to the Unregistered (0) state so that the OOB Step can be
repeated as the last resort.

MUST
SHOULD

SHOULD

MAY

MAY
SHOULD

3.6.6. Application-Specific Failure

Applications define new error messages for failures that are specific to the application or to
one type of OOB channel. They also use the generic application-specific error code 5001 or
the error codes 5002 and 5004, which have been reserved for indicating invalid data in the
ServerInfo and PeerInfo fields, respectively. Additionally, anticipating OOB channels that make
use of a URL, the error code 5003 has been reserved for indicating an invalid server URL.

MAY
MAY

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 29

4. ServerInfo and PeerInfo Contents
The ServerInfo and PeerInfo fields in the Initial Exchange and Reconnect Exchange enable the
server and peer, respectively, to send information about themselves to the other endpoint. They
contain JSON objects whose structure may be specified separately for each application and each
type of OOB channel. ServerInfo and PeerInfo contain auxiliary data needed for the OOB
channel messaging and for EAP channel binding (see Section 6.7). This section describes the
optional initial data fields for ServerInfo and PeerInfo registered by this specification. Further
specifications may request new application-specific ServerInfo and PeerInfo data fields from
IANA (see Sections 5.4 and 5.5).

MAY

Data Field Description

Type Type-tag string that can be used by the peer as a hint for how to interpret
the ServerInfo contents.

ServerName String that may be used to aid human identification of the server.

ServerURL Prefix string when the OOB message is formatted as a URL, as suggested in
Appendix D.

SSIDList List of IEEE 802.11 wireless network service set identifier (SSID) strings used
for roaming support, as suggested in Appendix C. JSON array of ASCII-
encoded SSID strings.

Base64SSIDList List of IEEE 802.11 wireless network identifier (SSID) strings used for
roaming support, as suggested in Appendix C. JSON array of SSIDs, each of
which is base64url-encoded without padding. Peers send at most
one of the fields SSIDList and Base64SSIDList in PeerInfo, and the server

 ignore SSIDList if Base64SSIDList is included.

Table 6: ServerInfo Data Fields

SHOULD

SHOULD

Data Field Description

Type Type-tag string that can be used by the server as a hint for how to interpret
the PeerInfo contents.

PeerName String that may be used to aid human identification of the peer.

Manufacturer Manufacturer or brand string.

Model Manufacturer-specified model string.

SerialNumber Manufacturer-assigned serial number.

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 30

Data Field Description

MACAddress Peer link-layer 48-bit extended unique identifier (EUI-48) in the 12-digit
base-16 form . The string be in upper or lower case and
include additional colon ':' or dash '-' characters that be ignored by the
server.

SSID IEEE 802.11 network SSID for channel binding. The SSID is an ASCII string.

Base64SSID IEEE 802.11 network SSID for channel binding. The SSID is base64url
encoded. Peer send at most one of the fields SSID and Base64SSID in
PeerInfo, and the server ignore SSID if Base64SSID is included.

BSSID Wireless network basic service set identifier (BSSID) (EUI-48) in the 12-digit
base-16 form for channel binding. The string be in upper or
lower case and include additional colon ':' or dash '-' characters that

 be ignored by the server.

Table 7: PeerInfo Data Fields

[EUI-48] MAY MAY
MUST

SHOULD
SHOULD

[EUI-48] MAY
MAY

MUST

5. IANA Considerations
This section provides information regarding registration of values related to the EAP-NOOB
method, in accordance with .

The EAP Method Type for EAP-NOOB (value 56) has been assigned in the "Method Types"
subregistry of the "Extensible Authentication Protocol (EAP) Registry".

Per this memo, IANA has created and will maintain a new registry entitled "Nimble Out-of-Band
Authentication for EAP Parameters (EAP-NOOB)" in the Extensible Authentication Protocol (EAP)
category. Also, IANA has created and will maintain the subregistries defined in the following
subsections.

[RFC8126]

5.1. Cryptosuites
IANA has created and will maintain a new subregistry entitled "EAP-NOOB Cryptosuites" in the
"Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry. Cryptosuites are
identified by an integer. Each cryptosuite specify an ECDHE curve for the key exchange,
encoding of the ECDHE public key as a JWK object, and a cryptographic hash function for the
fingerprint and HMAC computation and key derivation. The hash value output by the
cryptographic hash function be at least 32 bytes in length. The initial values for this registry
are:

MUST

MUST

Cryptosuite Algorithms

0 Reserved

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 31

EAP-NOOB implementations support Cryptosuite 1. Support for Cryptosuite 2 is
. An example of a Cryptosuite 1 public-key encoded as a JWK object is given below.

(Line breaks are for readability only.)

Assignment of new values for new cryptosuites be done through IANA with "Specification
Required", as defined in .

Cryptosuite Algorithms

1 ECDHE curve Curve25519 , public-key format , hash
function SHA-256 . The JWK encoding of Curve25519 public key is
defined in . For clarity, the "crv" parameter is "X25519", the "kty"
parameter is "OKP", and the public-key encoding contains only an x-
coordinate.

2 ECDHE curve NIST P-256 , public-key format , hash
function SHA-256 . The JWK encoding of NIST P-256 public key is
defined in . For clarity, the "crv" parameter is "P-256", the "kty"
parameter is "EC", and the public-key encoding has both an x and y
coordinate, as defined in .

Table 8: EAP-NOOB Cryptosuites

[RFC7748] [RFC7517]
[RFC6234]

[RFC8037]

[FIPS186-4] [RFC7517]
[RFC6234]

[RFC7518]

Section 6.2.1 of [RFC7518]

MUST
RECOMMENDED

"jwk":{"kty":"OKP","crv":"X25519","x":"3p7bfXt9wbTTW2HC7OQ1Nz-
DQ8hbeGdNrfx-FG-IK08"}

MUST
[RFC8126]

5.2. Message Types
IANA has created and will maintain a new subregistry entitled "EAP-NOOB Message Types" in the
"Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry. EAP-NOOB
request and response pairs are identified by an integer Message Type. The initial values for this
registry are:

Message
Type

Used in
Exchange

Purpose

0 Error Error notification

1 All exchanges PeerId and PeerState discovery

2 Initial Version, cryptosuite, and parameter negotiation

3 Initial Exchange of ECDHE keys and nonces

4 Waiting Indication to the peer that the server has not yet received
an OOB message

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 32

https://www.rfc-editor.org/rfc/rfc7518#section-6.2.1

Assignment of new values for new Message Types be done through IANA with "Specification
Required", as defined in .

Message
Type

Used in
Exchange

Purpose

5 Completion NoobId discovery

6 Completion Authentication and key confirmation with HMAC

7 Reconnect Version, cryptosuite, and parameter negotiation

8 Reconnect Exchange of ECDHE keys and nonces

9 Reconnect Authentication and key confirmation with HMAC

Table 9: EAP-NOOB Message Types

MUST
[RFC8126]

5.3. Error Codes
IANA has created and will maintain a new subregistry entitled "EAP-NOOB Error codes" in the
"Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry. Cryptosuites are
identified by an integer. The initial values for this registry are:

Error code Purpose

1001 Invalid NAI

1002 Invalid message structure

1003 Invalid data

1004 Unexpected message type

1005 Invalid ECDHE key

2001 Unwanted peer

2002 State mismatch, user action required

2003 Unrecognized OOB message identifier

2004 Unexpected peer identifier

3001 No mutually supported protocol version

3002 No mutually supported cryptosuite

3003 No mutually supported OOB direction

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 33

Assignment of new error codes be done through IANA with "Specification Required", as
defined in , except for the range 6001-6999. This range is reserved for "Private Use" and
"Experimental Use", both locally and on the open Internet.

Error code Purpose

4001 HMAC verification failure

5001 Application-specific error

5002 Invalid server info

5003 Invalid server URL

5004 Invalid peer info

6001-6999 Reserved for Private and Experimental Use

Table 10: EAP-NOOB Error Codes

MUST
[RFC8126]

5.4. ServerInfo Data Fields
IANA has created and will maintain a new subregistry entitled "EAP-NOOB ServerInfo Data
Fields" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry. The
initial values for this registry are:

Assignment of new values for new ServerInfo data fields be done through IANA with
"Specification Required", as defined in .

Data Field Specification

Type RFC 9140, Section 4

ServerName RFC 9140, Section 4

ServerURL RFC 9140, Section 4

SSIDList RFC 9140, Section 4

Base64SSIDList RFC 9140, Section 4

Table 11: ServerInfo Data Fields

MUST
[RFC8126]

5.5. PeerInfo Data Fields
IANA is requested to create and maintain a new subregistry entitled "EAP-NOOB PeerInfo Data
Fields" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry. The
initial values for this registry are:

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 34

Assignment of new values for new PeerInfo data fields be done through IANA with
"Specification Required", as defined in .

Data Field Specification

Type RFC 9140, Section 4

PeerName RFC 9140, Section 4

Manufacturer RFC 9140, Section 4

Model RFC 9140, Section 4

SerialNumber RFC 9140, Section 4

MACAddress RFC 9140, Section 4

SSID RFC 9140, Section 4

Base64SSID RFC 9140, Section 4

BSSID RFC 9140, Section 4

Table 12: PeerInfo Data Fields

MUST
[RFC8126]

5.6. Domain Name Reservation
The special-use domain "eap-noob.arpa" has been registered in the .arpa registry (

) and the "Special-Use Domain Names" registry (
).

https://
www.iana.org/domains/arpa https://
www.iana.org/assignments/special-use-domain-names

5.7. Guidance for Designated Experts
Experts be conservative in the allocation of new Cryptosuites. Experts ascertain
that the requested values match the current Crypto Forum Research Group (CFRG) guidance on
cryptographic algorithm security. Experts ensure that any new Cryptosuites fully specify the
encoding of the ECDHE public key and should include details, such as the value of the "kty" (key
type) parameter when JWK encoding is used.

Experts be conservative in the allocation of new Message Types. Experts
ascertain that a well-defined specification for the new Message Type is permanently and publicly
available.

Experts be conservative in the allocation of new Error codes, since the 6001-6999 range is
already reserved for private and experimental use.

SHOULD MUST

MUST

[RFC7517]

SHOULD SHOULD

SHOULD

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 35

https://www.iana.org/domains/arpa
https://www.iana.org/domains/arpa
https://www.iana.org/assignments/special-use-domain-names
https://www.iana.org/assignments/special-use-domain-names

Experts be liberal in the allocation of new ServerInfo and PeerInfo data fields. Experts
ensure that the data field requested has a unique name that is not easily confused with existing
registrations. For example, requests for a new PeerInfo data field "ssid" should be rejected even
though it is unique because it can be confused with the existing registration of "SSID". Experts

 ensure that a suitable Description for the data field is available.

MAY MUST

MUST

6. Security Considerations
EAP-NOOB is an authentication and key derivation protocol; thus, security considerations can be
found in most sections of this specification. In the following, we explain the protocol design and
highlight some other special considerations.

6.1. Authentication Principle
EAP-NOOB establishes a shared secret with an authenticated ECDHE key exchange. The mutual
authentication in EAP-NOOB is based on two separate features, both conveyed in the OOB
message. The first authentication feature is the secret nonce Noob. The peer and server use this
secret in the Completion Exchange to mutually authenticate the session key previously created
with ECDHE. The message authentication codes computed with the secret nonce Noob are alone
sufficient for authenticating the key exchange. The second authentication feature is the integrity-
protecting fingerprint Hoob. Its purpose is to prevent impersonation attacks even in situations
where the attacker is able to eavesdrop on the OOB channel and the nonce Noob is compromised.
In some human-assisted OOB channels, such as human-perceptible audio or a user-typed URL, it
may be easier to detect tampering than disclosure of the OOB message, and such applications
benefit from the second authentication feature.

The additional security provided by the cryptographic fingerprint Hoob is somewhat intricate to
understand. The endpoint that receives the OOB message uses Hoob to verify the integrity of the
ECDHE exchange. Thus, the OOB receiver can detect impersonation attacks that may have
happened on the in-band channel. The other endpoint, however, is not equally protected because
the OOB message and fingerprint are sent only in one direction. Some protection to the OOB
sender is afforded by the fact that the user may notice the failure of the association at the OOB
receiver and therefore reset the OOB sender. Other device-pairing protocols have solved similar
situations by requiring the user to confirm to the OOB sender that the association was accepted
by the OOB receiver, e.g., with a button press on the sender side. Applications implement EAP-
NOOB in this way. Nevertheless, since EAP-NOOB was designed to work with strictly one-
directional OOB communication and the fingerprint is only the second authentication feature,
the EAP-NOOB specification does not mandate such explicit confirmation to the OOB sender.

To summarize, EAP-NOOB uses the combined protection of the secret nonce Noob and the
cryptographic fingerprint Hoob, both conveyed in the OOB message. The secret nonce Noob
alone is sufficient for mutual authentication unless the attacker can eavesdrop on it from the
OOB channel. Even if an attacker is able to eavesdrop on the secret nonce Noob, it nevertheless
cannot perform a full impersonation attack on the in-band channel because a mismatching
fingerprint would alert the OOB receiver, which would reject the OOB message. The attacker that

MAY

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 36

eavesdropped on the secret nonce can impersonate the OOB receiver to the OOB sender. If it does,
the association will appear to be complete only on the OOB sender side, and such situations have
to be resolved by the user by resetting the OOB sender to the initial state.

The expected use cases for EAP-NOOB are ones where it replaces a user-entered access credential
in IoT appliances. In wireless network access without EAP, the user-entered credential is often a
passphrase that is shared by all the network stations. The advantage of an EAP-based solution,
including EAP-NOOB, is that it establishes a different shared secret for each peer device, which
makes the system more resilient against device compromise. Another advantage is that it is
possible to revoke the security association for an individual device on the server side.

Forward secrecy during fast reconnect in EAP-NOOB is optional. The Reconnect Exchange in EAP-
NOOB provides forward secrecy only if both the server and peer send their fresh ECDHE keys. This
allows both the server and peer to limit the frequency of the costly computation that is required
for forward secrecy. The server adjust the frequency of its attempts at ECDHE rekeying based
on what it knows about the peer's computational capabilities.

Another way in which some servers may control their computational load is to reuse the same
ECDHE key for all peers over a short server-specific time window. In that case, forward secrecy
will be achieved only after the server updates its ECDHE key, which may be a reasonable trade-off
between security and performance. However, the server reuse the same ECDHE key
with the same peer when rekeying with ECDHE (KeyingMode=2 or KeyingMode=3). Instead, it can
simply not send an ECDHE key (KeyingMode=1).

The users delivering the OOB messages will often authenticate themselves to the EAP server, e.g.,
by logging into a secure web page or API. In this case, the server can associate the peer device with
the user account. Applications that make use of EAP-NOOB can use this information for
configuring the initial owner of the freshly registered device.

MAY

MUST NOT

6.2. Identifying Correct Endpoints
Potential weaknesses in EAP-NOOB arise from the fact that the user must physically identify the
correct peer device. If the user mistakenly delivers the OOB message from the wrong peer device
to the server, the server may create an association with the wrong peer. The reliance on the user
in identifying the correct endpoints is an inherent property of user-assisted, out-of-band
authentication. To understand the potential consequences of the user mistake, we need to
consider a few different scenarios. In the first scenario, there is no malicious party, and the user
makes an accidental mistake between two out-of-the-box devices that are both ready to be
registered to a server. If the user delivers the OOB message from the wrong device to the server,
confusion may arise but usually no security issues. In the second scenario, an attacker
intentionally tricks the user, for example, by substituting the original peer device with a
compromised one. This is essentially a supply chain attack where the user accepts a
compromised physical device.

There is also a third scenario, in which an opportunistic attacker tries to take advantage of the
user's accidental mistake. For example, the user could play an audio or a blinking LED message to
a device that is not expecting to receive it. In simple security bootstrapping solutions that

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 37

transfer a primary key to the device via the OOB channel, the device could misuse or leak the
accidentally received primary key. EAP-NOOB is not vulnerable to such opportunistic attackers
because the OOB message has no value to anyone who did not take part in the corresponding
Initial Exchange.

One mechanism that can mitigate user mistakes is certification of peer devices. A certificate or
an attestation token (e.g., and) can convey to the server authentic
identifiers and attributes, such as model and serial number, of the peer device. Compared to a
fully certificate-based authentication, however, EAP-NOOB can be used without trusted third
parties and does not require the user to know any identifier of the peer device; physical access to
the device is sufficient for bootstrapping with EAP-NOOB.

Similarly, the attacker can try to trick the user into delivering the OOB message to the wrong
server so that the peer device becomes associated with the wrong server. If the EAP server is
accessed through a web user interface, the attack is akin to phishing attacks where the user is
tricked into accessing the wrong URL and wrong web page. OOB implementation with a
dedicated app on a mobile device, which communicates with a server API at a preconfigured URL,
can protect against such attacks.

After the device registration, an attacker could clone the device identity by copying the keys from
the persistent EAP-NOOB association into another device. The attacker can be an outsider who
gains access to the keys or the device owner who wants to have two devices matching the same
registration. The cloning threats can be mitigated by creating the cryptographic keys and storing
the persistent EAP-NOOB association on the peer device in a secure hardware component such as
a trusted execution environment (TEE). Furthermore, remote attestation on the application level
could provide assurance to the server that the device has not been cloned. Reconnect Exchange
with a new cryptosuite (KeyingMode=3) will also disconnect all but the first clone that performs
the update.

[TLS-CWT] [RATS-EAT]

6.3. Trusted Path Issues and Misbinding Attacks
Another potential threat is spoofed user input or output on the peer device. When the user is
delivering the OOB message to or from the correct peer device, a trusted path between the user
and the peer device is needed. That is, the user must communicate directly with an authentic
operating system and EAP-NOOB implementation in the peer device and not with a spoofed user
interface. Otherwise, a registered device that is under the control of the attacker could emulate
the behavior of an unregistered device. The secure path can be implemented, for example, by
having the user press a reset button to return the device to the Unregistered (0) state and to
invoke a trusted UI. The problem with such trusted paths is that they are not standardized across
devices.

Another potential consequence of a spoofed UI is the misbinding attack where the user tries to
register a correct but compromised device, which tricks the user into registering another
(uncompromised) device instead. For example, the compromised device might have a malicious,
full-screen app running, which presents to the user QR codes copied, in real time, from another
device's screen. If the unwitting user scans the QR code and delivers the OOB message in it to the
server, the wrong device may become registered in the server. Such misbinding vulnerabilities

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 38

arise because the user does not have any secure way of verifying that the in-band cryptographic
handshake and the out-of-band physical access are terminated at the same physical device. Sethi
et al. analyze the misbinding threat against device-pairing protocols and also EAP-
NOOB. Essentially, all protocols where the authentication relies on the user's physical access to
the device are vulnerable to misbinding, including EAP-NOOB.

A standardized trusted path for communicating directly with the trusted computing base in a
physical device would mitigate the misbinding threat, but such paths rarely exist in practice.
Careful asset tracking on the server side can also prevent most misbinding attacks if the peer
device sends its identifiers or attributes in the PeerInfo field and the server compares them with
the expected values. The wrong but uncompromised device's PeerInfo will not match the
expected values. Device certification by the manufacturer can further strengthen the asset
tracking.

[Sethi19]

6.4. Peer Identifiers and Attributes
The PeerId value in the protocol is a server-allocated identifier for its association with the peer
and be shown to the user because its value is initially ephemeral. Since the PeerId is
allocated by the server and the scope of the identifier is the single server, the so-called identifier
squatting attacks, where a malicious peer could reserve another peer's identifier, are not possible
in EAP-NOOB. The server assign a random or pseudorandom PeerId to each new peer. It

 select the PeerId based on any peer characteristics that it may know, such as the
peer's link-layer network address.

User reset or failure in the OOB Step can cause the peer to perform many Initial Exchanges with
the server, which allocates many PeerId values and stores the ephemeral protocol state for them.
The peer will typically only remember the latest ones. EAP-NOOB leaves it to the implementation
to decide when to delete these ephemeral associations. There is no security reason to delete them
early, and the server does not have any way to verify that the peers are actually the same one.
Thus, it is safest to store the ephemeral states on the server for at least one day. If the OOB
messages are sent only in the server-to-peer direction, the server delete the
ephemeral state before all the related Noob values have expired.

After completion of EAP-NOOB, the server may store the PeerInfo data, and the user may use it to
identify the peer and its attributes, such as the make and model or serial number. A compromised
peer could lie in the PeerInfo that it sends to the server. If the server stores any information about
the peer, it is important that this information is approved by the user during or after the OOB
Step. Without verification by the user or authentication on the application level, the PeerInfo is
not authenticated information and should not be relied on. One possible use for the PeerInfo field
is EAP channel binding (see Section 6.7).

SHOULD NOT

SHOULD
SHOULD NOT

SHOULD NOT

6.5. Downgrading Threats
The fingerprint Hoob protects all the information exchanged in the Initial Exchange, including
the cryptosuite negotiation. The message authentication codes MACs and MACp also protect the
same information. The message authentication codes MACs2 and MACp2 protect information
exchanged during key renegotiation in the Reconnect Exchange. This prevents downgrading

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 39

attacks to weaker cryptosuites, as long as the possible attacks take more time than the maximum
time allowed for the EAP-NOOB completion. This is typically the case for recently discovered
cryptanalytic attacks.

As an additional precaution, the EAP server and peer check for downgrading attacks in the
Reconnect Exchange as follows. As long as the server or peer saves any information about the
other endpoint, it also remember the previously negotiated cryptosuite and
accept renegotiation of any cryptosuite that is known to be weaker than the previous one, such as
a deprecated cryptosuite. Determining the relative strength of the cryptosuites is out of scope of
this specification and may be managed by implementations or by local policies at the peer and
server.

Integrity of the direction negotiation cannot be verified in the same way as the integrity of the
cryptosuite negotiation. That is, if the OOB channel used in an application is critically insecure in
one direction, an on-path attacker could modify the negotiation messages and thereby cause that
direction to be used. Applications that support OOB messages in both directions ,
therefore, ensure that the OOB channel has sufficiently strong security in both directions. While
this is a theoretical vulnerability, it could arise in practice if EAP-NOOB is deployed in new
applications. Currently, we expect most peer devices to support only one OOB direction; in which
case, interfering with the direction negotiation can only prevent the completion of the protocol.

The long-term shared key material Kz in the persistent EAP-NOOB association is established with
an ECDHE key exchange when the peer and server are first associated. It is a weaker secret than a
manually configured random shared key because advances in cryptanalysis against the used
ECDHE curve could eventually enable the attacker to recover Kz. EAP-NOOB protects against such
attacks by allowing cryptosuite upgrades in the Reconnect Exchange and by updating the shared
key material Kz whenever the cryptosuite is upgraded. We do not expect the cryptosuite upgrades
to be frequent, but, if an upgrade becomes necessary, it can be done without manual reset and
reassociation of the peer devices.

MUST

MUST MUST NOT

SHOULD

6.6. Protected Success and Failure Indications
 allows EAP methods to specify protected result indications because EAP-

Success and EAP-Failure packets are neither acknowledged nor integrity protected.
notes that these indications may be explicit or implicit.

EAP-NOOB relies on implicit, protected success indicators in the Completion Exchange and
Reconnect Exchange. Successful verification of MACs and MACs2 in the EAP-Request message
from the server (message type 6 and message type 9, respectively) acts as an implicit, protected
success indication to the peer. Similarly, successful verification of MACp and MACp2 in the EAP-
Response message from the peer (message type 6 and message type 9, respectively) act as an
implicit, protected success indication to the server.

Section 7.16 of [RFC3748]
[RFC3748]

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 40

https://www.rfc-editor.org/rfc/rfc3748#section-7.16

EAP-NOOB failure messages are not protected. Protected failure result indications would not
significantly improve availability since EAP-NOOB reacts to most malformed data by ending the
current EAP conversation in EAP-Failure. However, since EAP-NOOB spans multiple
conversations, failure in one conversation usually means no state change on the level of the EAP-
NOOB state machine.

6.7. Channel Binding
EAP channel binding, defined in , means that the endpoints compare their perceptions
of network properties, such as lower-layer identifiers, over the secure channel established by EAP
authentication. defines two approaches to channel binding. EAP-NOOB
follows the first approach, in which the peer and server exchange plaintext information about the
network over a channel that is integrity protected with keys derived during the EAP execution.
More specifically, channel information is exchanged in the plaintext PeerInfo and ServerInfo
objects and is later verified with message authentication codes (MACp, MACs, MACp2, and
MACs2). This allows policy-based comparison with locally perceived network properties on either
side, as well as logging for debugging purposes. The peer include in PeerInfo any data items
that it wants to bind to the EAP-NOOB association and to the exported keys. These can be
properties of the authenticator or the access link, such as the SSID and BSSID of the wireless
network (see Table 6). As noted in , the scope of the channel binding varies
between deployments. For example, the server may have less link-layer information available
from roaming networks than from a local enterprise network, and it may be unable to verify all
the network properties received in PeerInfo. There are also privacy considerations related to
exchanging the ServerInfo and PeerInfo while roaming (see Section 6.10).

Channel binding to secure channels, defined in , binds authentication at a higher
protocol layer to a secure channel at a lower layer. Like most EAP methods, EAP-NOOB exports
the session keys MSK and EMSK, and an outer tunnel or a higher-layer protocol can bind its
authentication to these keys. Additionally, EAP-NOOB exports the key AMSK, which may be used
to bind application-layer authentication to the secure channel created by EAP-NOOB and to the
session keys MSK and EMSK.

[RFC6677]

Section 4.1 of [RFC6677]

MAY

Section 4.3 of [RFC6677]

[RFC5056]

6.8. Denial of Service
While denial-of-service (DoS) attacks by on-link attackers cannot be fully prevented, the design
goal in EAP-NOOB is to void long-lasting failure caused by an attacker who is present only
temporarily or intermittently. The main defense mechanism is the persistent EAP-NOOB
association, which is never deleted automatically due to in-band messages or error indications.
Thus, the endpoints can always use the persistent association for reconnecting after the DoS
attacker leaves the network. In this sense, the persistent association serves the same function in
EAP-NOOB as a permanent primary key or certificate in other authentication protocols. We
discuss logical attacks against the updates of the persistent association in Section 6.9.

In addition to logical DoS attacks, it is necessary to consider resource exhaustion attacks against
the EAP server. The number of persistent EAP-NOOB associations created in the server is limited
by the need for a user to assist in delivering the OOB message. The users can be authenticated for
the input or output of the OOB message at the EAP server, and any users who create excessive

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 41

https://www.rfc-editor.org/rfc/rfc6677#section-4.1
https://www.rfc-editor.org/rfc/rfc6677#section-4.3

numbers of persistent associations can be held accountable and their associations can be deleted
by the server administrator. What the attacker can do without user authentication is to perform
the Initial Exchange repeatedly and create a large number of ephemeral associations (server in
Waiting for OOB (1) state) without ever delivering the OOB message. In Section 6.4, it was
suggested that the server should store the ephemeral states for at least a day. This may require off-
loading the state storage from memory to disk during a DoS attack. However, if the server
implementation is unable to keep up with a rate of Initial Exchanges performed by a DoS
attacker and needs to drop some ephemeral states, no damage is caused to already-created
persistent associations, and the honest users can resume registering new peers when the DoS
attacker leaves the network.

There are some trade-offs in the protocol design between politely backing off and giving way to
DoS attackers. An on-link DoS attacker could spoof the SleepTime value in the Initial Exchange or
Waiting Exchange to cause denial of service against a specific peer device. There is an upper limit
on the SleepTime (3600 seconds) to mitigate the spoofing threat. This means that, in the presence
of an on-link DoS attacker who spoofs the SleepTime, it could take up to one hour after the
delivery of the OOB message before the device performs the Completion Exchange and becomes
functional. Similarly, the Unwanted peer error (error code 2001) could cause the peer to stop
connecting to the network. If the peer device is able to alert the user about the error condition, it
can safely stop connecting to the server and wait for the user to trigger a reconnection attempt,
e.g., by resetting the device. As mentioned in Section 3.6.2, peer devices that are unable to alert the
user should continue to retry the Initial Exchange infrequently to avoid a permanent DoS
condition. We believe a maximum backoff time of 3600 seconds is reasonable for a new protocol
because malfunctioning or misconfigured peer implementations are at least as great a concern
as DoS attacks, and politely backing off within some reasonable limits will increase the
acceptance of the protocol. The maximum backoff times could be updated to be shorter as the
protocol implementations mature.

6.9. Recovery from Loss of Last Message
The EAP-NOOB Completion Exchange, as well as the Reconnect Exchange with cryptosuite update,
results in a persistent state change that should take place either on both endpoints or on neither;
otherwise, the result is a state mismatch that requires user action to resolve. The state mismatch
can occur if the final EAP response of the exchanges is lost. In the Completion Exchange, the loss
of the final response (Type=6) results in the peer moving to the Registered (4) state and creating a
persistent EAP-NOOB association while the server stays in an ephemeral state (1 or 2). In the
Reconnect Exchange, the loss of the final response (Type=9) results in the peer moving to the
Registered (4) state and updating its persistent key material Kz while the server stays in the
Reconnecting (3) state and keeps the old key material.

The state mismatch is an example of an unavoidable problem in distributed systems: it is
theoretically impossible to guarantee synchronous state changes in endpoints that communicate
asynchronously. The protocol will always have one critical message that may get lost, so that one
side commits to the state change and the other side does not. In EAP, the critical message is the
final response from the peer to the server. While the final response is normally followed by EAP-
Success, states that the peer assume that the EAP-Success was lost and[RFC3748], Section 4.2 MAY

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc3748#section-4.2

the authentication was successful. Furthermore, EAP method implementations in the peer do not
receive notification of the EAP-Success message from the parent EAP state machine .
For these reasons, EAP-NOOB on the peer side commits to a state change already when it sends
the final response.

The best available solution to the loss of the critical message is to keep trying. EAP retransmission
behavior defined in suggests 3-5 retransmissions. In the absence of an
attacker, this would be sufficient to reduce the probability of failure to an acceptable level.
However, a determined attacker on the in-band channel can drop the final EAP-Response
message and all subsequent retransmissions. In the Completion Exchange (KeyingMode=0) and
Reconnect Exchange with cryptosuite upgrade (KeyingMode=3), this could result in a state
mismatch and persistent denial of service until the user resets the peer state.

EAP-NOOB implements its own recovery mechanism that allows unlimited retries of the
Reconnect Exchange. When the DoS attacker eventually stops dropping packets on the in-band
channel, the protocol will recover. The logic for this recovery mechanism is specified in Section
3.4.2.

EAP-NOOB does not implement the same kind of retry mechanism in the Completion Exchange.
The reason is that there is always a user involved in the initial association process, and the user
can repeat the OOB Step to complete the association after the DoS attacker has left. On the other
hand, Reconnect Exchange needs to work without user involvement.

[RFC4137]

Section 4.3 of [RFC3748]

6.10. Privacy Considerations
There are privacy considerations related to performing the Reconnect Exchange while roaming.
The peer and server may send updated PeerInfo and ServerInfo fields in the Reconnect Exchange.
This data is sent unencrypted between the peer and the EAP authenticator, such as a wireless
access point. Thus, it can be observed by both outsiders and the access network. The PeerInfo field
contains identifiers and other information about the peer device (see Table 6). While the
information refers to the peer device and not directly to the user, it can leak information about
the user to the access network and to outside observers. The ServerInfo, on the other hand, can
leak information about the peer's affiliation with the home network. For this reason, the optional
PeerInfo and ServerInfo in the Reconnect Exchange be omitted unless some critical data
has changed and it cannot be updated on the application layer.

Peer devices that randomize their Layer 2 address to prevent tracking can do this whenever the
user resets the EAP-NOOB association. During the lifetime of the association, the PeerId is a
unique identifier that can be used to track the peer in the access network. Later versions of this
specification may consider updating the PeerId at each Reconnect Exchange. In that case, it is
necessary to consider how the authenticator and access-network administrators can recognize
and add misbehaving peer devices to a deny list, as well as how to avoid loss of synchronization
between the server and the peer if messages are lost during the identifier update.

SHOULD

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 43

https://www.rfc-editor.org/rfc/rfc3748#section-4.3

To enable stronger identity protection in later versions of EAP-NOOB, the optional server-
assigned NAI (NewNAI) have a constant username part. The username is
"noob". The server , however, send a different username in NewNAI to avoid username
collisions within its realm or to conform to a local policy on usernames.

SHOULD RECOMMENDED
MAY

6.11. EAP Security Claims
EAP security claims are defined in . The security claims for EAP-NOOB
are listed in Table 13.

Section 7.2.1 of [RFC3748]

Security Property EAP-NOOB Claim

Authentication
mechanism

ECDHE key exchange with out-of-band authentication

Protected cryptosuite
negotiation

yes

Mutual authentication yes

Integrity protection yes

Replay protection yes

Confidentiality no

Key derivation yes

Key strength The specified cryptosuites provide key strength of at least 128 bits.

Dictionary attack
protection

yes

Fast reconnect yes

Cryptographic binding not applicable

Session independence yes

Fragmentation no

Channel binding yes (The ServerInfo and PeerInfo can be used to convey integrity-
protected channel properties, such as network SSID or peer MAC
address.)

Table 13: EAP Security Claims

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 44

https://www.rfc-editor.org/rfc/rfc3748#section-7.2.1

[EUI-48]

[FIPS186-4]

[NIST-DH]

[RFC2104]

[RFC2119]

[RFC3748]

[RFC4648]

[RFC5247]

[RFC6234]

[RFC7517]

[RFC7518]

7. References

7.1. Normative References

,
, , , June

2014, .

,
, , , July 2013,

.

, , , , and ,
,

, , April
2018,

.

, , and ,
, , , February 1997,

.

, , ,
, , March 1997,
.

, , , , and ,
, , , June 2004,

.

, , ,
, October 2006, .

, , and ,
, , , August 2008,

.

 and ,
, , , May 2011,

.

, , , , May 2015,
.

, , , , May
2015, .

IEEE "IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture" DOI 10.1109/IEEESTD.2014.6847097 IEEE Standard 802-2014

<https://doi.org/10.1109/IEEESTD.2014.6847097>

National Institute of Standards and Technology (NIST) "Digital Signature
Standard (DSS)" DOI 10.6028/NIST.FIPS.186-4 FIPS 186-4 <https://
doi.org/10.6028/NIST.FIPS.186-4>

Barker, E. Chen, L. Roginsky, A. Vassilev, A. R. Davis "Recommendation for
Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography"
DOI 10.6028/NIST.SP.800-56Ar3 NIST Special Publication 800-56A Revision 3

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-56Ar3.pdf>

Krawczyk, H. Bellare, M. R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Aboba, B. Blunk, L. Vollbrecht, J. Carlson, J. H. Levkowetz, Ed. "Extensible
Authentication Protocol (EAP)" RFC 3748 DOI 10.17487/RFC3748
<https://www.rfc-editor.org/info/rfc3748>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Aboba, B. Simon, D. P. Eronen "Extensible Authentication Protocol (EAP)
Key Management Framework" RFC 5247 DOI 10.17487/RFC5247
<https://www.rfc-editor.org/info/rfc5247>

Eastlake 3rd, D. T. Hansen "US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://www.rfc-
editor.org/info/rfc6234>

Jones, M. "JSON Web Key (JWK)" RFC 7517 DOI 10.17487/RFC7517
<https://www.rfc-editor.org/info/rfc7517>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518
<https://www.rfc-editor.org/info/rfc7518>

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 45

https://doi.org/10.1109/IEEESTD.2014.6847097
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3748
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5247
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7518

[RFC7542]

[RFC7748]

[RFC8037]

[RFC8126]

[RFC8174]

[RFC8259]

[Bluetooth]

[IEEE-802.1X]

[RATS-EAT]

[RFC2904]

[RFC3986]

[RFC4137]

[RFC5056]

, , , , May
2015, .

, , and , , ,
, January 2016, .

,
, , , January

2017, .

, , and ,
, , , , June

2017, .

, , ,
, , May 2017,
.

, ,
, , , December 2017,

.

7.2. Informative References

, , July
2021, .

,
, , February 2020.

, , and ,
, , , 24 October 2021,

.

, , , , , ,
, , and , , ,

, August 2000, .

, , and ,
, , , , January 2005,

.

, , , and ,
, ,

, August 2005, .

, , ,
, November 2007, .

DeKok, A. "The Network Access Identifier" RFC 7542 DOI 10.17487/RFC7542
<https://www.rfc-editor.org/info/rfc7542>

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748
DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Liusvaara, I. "CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON
Object Signing and Encryption (JOSE)" RFC 8037 DOI 10.17487/RFC8037

<https://www.rfc-editor.org/info/rfc8037>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Bluetooth Special Interest Group "Bluetooth Core Specification Version 5.3"
<https://www.bluetooth.com/specifications/bluetooth-core-specification>

IEEE "IEEE Standard for Local and Metropolitan Area Networks--Port-Based
Network Access Control" IEEE Standard 802.1X-2020

Lundblade, L. Mandyam, G. J. O'Donoghue "The Entity Attestation Token
(EAT)" Work in Progress Internet-Draft, draft-ietf-rats-eat-11
<https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11>

Vollbrecht, J. Calhoun, P. Farrell, S. Gommans, L. Gross, G. de Bruijn, B. de Laat,
C. Holdrege, M. D. Spence "AAA Authorization Framework" RFC 2904 DOI
10.17487/RFC2904 <https://www.rfc-editor.org/info/rfc2904>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986 <https://
www.rfc-editor.org/info/rfc3986>

Vollbrecht, J. Eronen, P. Petroni, N. Y. Ohba "State Machines for Extensible
Authentication Protocol (EAP) Peer and Authenticator" RFC 4137 DOI 10.17487/
RFC4137 <https://www.rfc-editor.org/info/rfc4137>

Williams, N. "On the Use of Channel Bindings to Secure Channels" RFC 5056 DOI
10.17487/RFC5056 <https://www.rfc-editor.org/info/rfc5056>

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 46

https://www.rfc-editor.org/info/rfc7542
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8037
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11
https://www.rfc-editor.org/info/rfc2904
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4137
https://www.rfc-editor.org/info/rfc5056

[RFC5216]

[RFC6677]

[Sethi14]

[Sethi19]

[TLS-CWT]

, , and , ,
, , March 2008,

.

, , and ,
, ,

, July 2012, .

, , , and ,
,

, , September 2014,
.

, , and ,
, , February 2019,

.

 and ,
,

, , 13 July 2020,
.

Simon, D. Aboba, B. R. Hurst "The EAP-TLS Authentication Protocol" RFC
5216 DOI 10.17487/RFC5216 <https://www.rfc-editor.org/info/
rfc5216>

Hartman, S., Ed. Clancy, T. K. Hoeper "Channel-Binding Support for
Extensible Authentication Protocol (EAP) Methods" RFC 6677 DOI 10.17487/
RFC6677 <https://www.rfc-editor.org/info/rfc6677>

Sethi, M. Oat, E. Di Francesco, M. T. Aura "Secure bootstrapping of cloud-
managed ubiquitous displays" Proceedings of ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp 2014), pp. 739-750,
Seattle, USA DOI 10.1145/2632048.2632049 <http://dx.doi.org/
10.1145/2632048.2632049>

Sethi, M. Peltonen, A. T. Aura "Misbinding Attacks on Secure Device Pairing
and Bootstrapping" DOI 10.1145/3321705.3329813 <https://
arxiv.org/abs/1902.07550>

Tschofenig, H. M. Brossard "Using CBOR Web Tokens (CWTs) in Transport
Layer Security (TLS) and Datagram Transport Layer Security (DTLS)" Work in
Progress Internet-Draft, draft-tschofenig-tls-cwt-02 <https://
datatracker.ietf.org/doc/html/draft-tschofenig-tls-cwt-02>

Appendix A. Exchanges and Events per State
Table 14 shows how the EAP server chooses the exchange type depending on the server and peer
states. In the state combinations marked with hyphen "-", there is no possible exchange and user
action is required to make progress. Note that peer state 4 is omitted from the table because the
peer never connects to the server when the peer is in that state. The table also shows the handling
of errors in each exchange. A notable detail is that the recipient of error code 2003 moves to state
1.

Peer States Exchange Chosen by the Server Next Peer and Server States

Server State: Unregistered (0)

0..2 Initial Exchange both 1 (0 on error)

3 - no change, notify user

Server State: Waiting for OOB (1)

0 Initial Exchange both 1 (0 on error)

1 Waiting Exchange both 1 (no change on error)

2 Completion Exchange both 4 (A)

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 47

https://www.rfc-editor.org/info/rfc5216
https://www.rfc-editor.org/info/rfc5216
https://www.rfc-editor.org/info/rfc6677
http://dx.doi.org/10.1145/2632048.2632049
http://dx.doi.org/10.1145/2632048.2632049
https://arxiv.org/abs/1902.07550
https://arxiv.org/abs/1902.07550
https://datatracker.ietf.org/doc/html/draft-tschofenig-tls-cwt-02
https://datatracker.ietf.org/doc/html/draft-tschofenig-tls-cwt-02

(A)

(B)

peer to 1 on error 2003; no other changes on error

server to 1 on error 2003; no other changes on error

Table 15 lists the local events that can take place in the server or peer. Both the server and peer
output and accept OOB messages in association state 1, leading the receiver to state 2.
Communication errors and timeouts in states 0..2 lead back to state 0, while similar errors in
states 3..4 lead to state 3. An application request for rekeying (e.g., to refresh session keys or to
upgrade cryptosuite) also takes the association from state 3..4 to state 3. The user can always reset
the association state to 0. Recovering association data, e.g., from a backup, leads to state 3.

Peer States Exchange Chosen by the Server Next Peer and Server States

3 - no change, notify user

Server State: OOB Received (2)

0 Initial Exchange both 1 (0 on error)

1 Completion Exchange both 4 (B)

2 Completion Exchange both 4 (A)

3 - no change, notify user

Server State: Reconnecting (3) or Registered (4)

0..2 - no change, notify user

3 Reconnect Exchange both 4 (3 on error)

Table 14: How the Server Chooses the Exchange Type

Server/Peer State Possible Local Events in the Server and Peer Next State

1 OOB Output 1

1 OOB Input 2 (1 on error)

0..2 Mobility/timeout/network failure 0

3..4 Mobility/timeout/network failure 3

3..4 Rekeying request 3

0..4 User resets association 0

0..4 Association state recovery 3

Table 15: Local Events in the Server and Peer

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 48

Appendix B. Application-Specific Parameters
Table 16 lists OOB channel parameters that need to be specified in each application that makes
use of EAP-NOOB. The list is not exhaustive and is included for the convenience of implementers
only.

Parameter Description

OobDirs Allowed directions of the OOB channel.

OobMessageEncoding How the OOB message data fields are encoded for the OOB channel.

SleepTimeDefault Default minimum time in seconds that the peer should sleep before
the next Waiting Exchange.

OobRetries Number of received OOB messages with invalid Hoob, after which
the receiver moves to Unregistered (0) state. When the OOB channel
has error detection or correction, the value is 5.

NoobTimeout How many seconds the sender of the OOB message remembers the
sent Noob value. The value is 3600 seconds.

ServerInfoType The value of the Type field and the other required fields in
ServerInfo.

PeerInfoType The value of the Type field and the other required fields in PeerInfo.

Table 16: OOB Channel Characteristics

RECOMMENDED

RECOMMENDED

Appendix C. EAP-NOOB Roaming
AAA architectures allow for roaming of network-connected appliances that are
authenticated over EAP. While the peer is roaming in a visited network, authentication still takes
place between the peer and an authentication server at its home network. EAP-NOOB supports
such roaming by allowing the server to assign a NAI to the peer. After the NAI has been assigned, it
enables the visited network to route the EAP session to the peer's home AAA server.

A peer device that is new or has gone through a hard reset should be connected first to the home
network and establish an EAP-NOOB association with its home AAA server before it is able to
roam. After that, it can perform the Reconnect Exchange from the visited network.

Alternatively, the device may provide some method for the user to configure the NAI of the home
network. This is the user or application-configured NAI mentioned in Section 3.3.1. In that case,
the EAP-NOOB association can be created while roaming. The configured NAI enables the EAP
messages to be routed correctly to the home AAA server.

[RFC2904]

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 49

While roaming, the device needs to identify the networks where the EAP-NOOB association can be
used to gain network access. For 802.11 access networks, the server send a list of SSID strings
in the ServerInfo field, called either SSIDList or Base64SSIDList. The list is formatted as explained
in Table 6. If present, the peer use this list as a hint to determine the networks where the EAP-
NOOB association can be used for access authorization, in addition to the access network where
the Initial Exchange took place.

MAY

MAY

Appendix D. OOB Message as a URL
While EAP-NOOB does not mandate any particular OOB communication channel, typical OOB
channels include graphical displays and emulated NFC tags. In the peer-to-server direction, it may
be convenient to encode the OOB message as a URL, which is then encoded as a QR code for
displays and printers or as an NFC Data Exchange Format (NDEF) record for dynamic NFC tags. A
user can then simply scan the QR code or NFC tag and open the URL, which causes the OOB
message to be delivered to the authentication server. The URL specify https or another
server-authenticated scheme so that there is a secure connection to the server and the on-path
attacker cannot read or modify the OOB message.

The ServerInfo in this case includes a field called ServerURL of the following format with a
 length of at most 60 characters:

https://<host>[:<port>]/[<path>]

To this, the peer appends the OOB message fields (PeerId, Noob, and Hoob) as a query string.
PeerId is provided to the peer by the server and might be a 22-character ASCII string. The peer
base64url encodes, without padding, the 16-byte values Noob and Hoob into 22-character ASCII
strings. The query parameters be in any order. The resulting URL is of the following format:

https://<host>[:<port>]/[<path>]?P=<PeerId>&N=<Noob>&H=<Hoob>

The following is an example of a well-formed URL encoding the OOB message (without line
breaks):

https://aaa.example.com/eapnoob?P=mcm5BSCDZ45cYPlAr1ghNw&N=rMinS0-
F4EfCU8D9ljxX_A&H=QvnMp4UGxuQVFaXPW_14UW

MUST

RECOMMENDED

MAY

Acknowledgments
, , and implemented parts of this protocol with

wpa_supplicant and hostapd. and were involved in the
implementation of this protocol on Contiki. Their inputs helped us in improving the specification.

The authors would like to thank and for providing valuable feedback, as
well as new use cases and requirements for the protocol. Thanks to , ,

, , , , ,
, , , , and for their comments and

reviews.

Max Crone Shiva Prasad TP Raghavendra MS
Eduardo Inglés Dan Garcia-Carrillo

Rhys Smith Josh Howlett
Eric Rescorla Alan Dekok

Darshak Thakore Stefan Winter Hannes Tschofenig Daniel Migault Roman Danyliw Benjamin
Kaduk Francesca Palombini Steve Hanna Lars Eggert Éric Vyncke

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 50

We would also like to express our sincere gratitude to for his thorough review of the
document.

Dave Thaler

Authors' Addresses
Tuomas Aura
Aalto University
FI- 00076 Aalto
Finland

 tuomas.aura@aalto.fi Email:

Mohit Sethi
Ericsson
FI- 02420 Jorvas
Finland

 mohit@iki.fi Email:

Aleksi Peltonen
Aalto University
FI- 00076 Aalto
Finland

 aleksi.peltonen@aalto.fi Email:

RFC 9140 EAP-NOOB December 2021

Aura, et al. Standards Track Page 51

mailto:tuomas.aura@aalto.fi
mailto:mohit@iki.fi
mailto:aleksi.peltonen@aalto.fi

	RFC 9140
	Nimble Out-of-Band Authentication for EAP (EAP‑NOOB)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. EAP-NOOB Method
	3.1. Protocol Overview
	3.2. Protocol Messages and Sequences
	3.2.1. Common Handshake in All EAP-NOOB Exchanges
	3.2.2. Initial Exchange
	3.2.3. OOB Step
	3.2.4. Completion Exchange
	3.2.5. Waiting Exchange

	3.3. Protocol Data Fields
	3.3.1. Peer Identifier and NAI
	3.3.2. Message Data Fields

	3.4. Fast Reconnect and Rekeying
	3.4.1. Persistent EAP-NOOB Association
	3.4.2. Reconnect Exchange
	3.4.3. User Reset

	3.5. Key Derivation
	3.6. Error Handling
	3.6.1. Invalid Messages
	3.6.2. Unwanted Peer
	3.6.3. State Mismatch
	3.6.4. Negotiation Failure
	3.6.5. Cryptographic Verification Failure
	3.6.6. Application-Specific Failure

	4. ServerInfo and PeerInfo Contents
	5. IANA Considerations
	5.1. Cryptosuites
	5.2. Message Types
	5.3. Error Codes
	5.4. ServerInfo Data Fields
	5.5. PeerInfo Data Fields
	5.6. Domain Name Reservation
	5.7. Guidance for Designated Experts

	6. Security Considerations
	6.1. Authentication Principle
	6.2. Identifying Correct Endpoints
	6.3. Trusted Path Issues and Misbinding Attacks
	6.4. Peer Identifiers and Attributes
	6.5. Downgrading Threats
	6.6. Protected Success and Failure Indications
	6.7. Channel Binding
	6.8. Denial of Service
	6.9. Recovery from Loss of Last Message
	6.10. Privacy Considerations
	6.11. EAP Security Claims

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Exchanges and Events per State
	Appendix B. Application-Specific Parameters
	Appendix C. EAP-NOOB Roaming
	Appendix D. OOB Message as a URL
	Acknowledgments
	Authors' Addresses

 Nimble Out-of-Band Authentication for EAP (EAP‑NOOB)

 Aalto University

 Aalto
 00076
 Finland

 tuomas.aura@aalto.fi

 Ericsson

 Jorvas
 02420
 Finland

 mohit@iki.fi

 Aalto University

 Aalto
 00076
 Finland

 aleksi.peltonen@aalto.fi

 Security
 EAP Method Update
 IoT security
 cybersecurity
 network access authorization
 Extensible Authentication Protocol
 key exchange

 The Extensible Authentication Protocol (EAP) provides support for multiple
 authentication methods.
 This document defines the EAP-NOOB authentication method for
 nimble out-of-band (OOB) authentication and key derivation. The EAP method is intended
 for bootstrapping all kinds of Internet-of-Things (IoT) devices that have no
 preconfigured authentication credentials. The method makes use of a user-assisted,
 one-directional, out-of-band (OOB) message between the peer device and authentication
 server to
 authenticate the in-band key exchange. The device must have a nonnetwork input or
 output interface, such as a display, microphone, speaker, or blinking light, that can
 send or receive dynamically generated messages of tens of bytes in length.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . EAP-NOOB Method

 . Protocol Overview

 . Protocol Messages and Sequences

 . Common Handshake in All EAP-NOOB Exchanges

 . Initial Exchange

 . OOB Step

 . Completion Exchange

 . Waiting Exchange

 . Protocol Data Fields

 . Peer Identifier and NAI

 . Message Data Fields

 . Fast Reconnect and Rekeying

 . Persistent EAP-NOOB Association

 . Reconnect Exchange

 . User Reset

 . Key Derivation

 . Error Handling

 . Invalid Messages

 . Unwanted Peer

 . State Mismatch

 . Negotiation Failure

 . Cryptographic Verification Failure

 . Application-Specific Failure

 . ServerInfo and PeerInfo Contents

 . IANA Considerations

 . Cryptosuites

 . Message Types

 . Error Codes

 . ServerInfo Data Fields

 . PeerInfo Data Fields

 . Domain Name Reservation

 . Guidance for Designated Experts

 . Security Considerations

 . Authentication Principle

 . Identifying Correct Endpoints

 . Trusted Path Issues and Misbinding Attacks

 . Peer Identifiers and Attributes

 . Downgrading Threats

 . Protected Success and Failure Indications

 . Channel Binding

 . Denial of Service

 . Recovery from Loss of Last Message

 . Privacy Considerations

 . EAP Security Claims

 . References

 . Normative References

 . Informative References

 . Exchanges and Events per State

 . Application-Specific Parameters

 . EAP-NOOB Roaming

 . OOB Message as a URL

 Acknowledgments

 Authors' Addresses

 Introduction
 This document describes a method for registration, authentication, and key derivation
 for network-connected smart devices, such as consumer and enterprise appliances that are
 part of the Internet of Things (IoT). These devices may be off-the-shelf hardware that
 is sold and distributed without any prior registration or credential-provisioning
 process, or they may be recycled devices after a hard reset. Thus, the device
 registration in a server database, ownership of the device, and the authentication
 credentials for both network access and application-level security must all be
 established at the time of the device deployment. Furthermore, many such devices have
 only limited user interfaces that could be used for their configuration. Often, the user
 interfaces are limited to either only input (e.g., a camera) or output (e.g., a display
 screen). The device configuration is made more challenging by the fact that the devices
 may exist in large numbers and may have to be deployed or reconfigured nimbly based on
 user needs.
 To summarize, devices may have the following characteristics:

 no preestablished relation with the intended server or user,
 no preprovisioned device identifier or authentication credentials, or
 an input or output interface that may be capable of only one-directional
	out-of-band communication.

 Many proprietary out-of-band (OOB) configuration methods exist for specific IoT
 devices. The goal of this specification is to provide an open standard and a generic
 protocol for bootstrapping the security of network-connected appliances, such as
 displays, printers, speakers, and cameras. The security bootstrapping in this
 specification makes use of a user-assisted OOB channel. The device authentication relies
 on a user having physical access to the device, and the key exchange security is based
 on the assumption that attackers are not able to observe or modify the messages conveyed
 through the OOB channel. We follow the common approach taken in pairing protocols:
 performing a Diffie-Hellman key exchange over the insecure network and authenticating
 the established key with the help of the OOB channel in order to prevent impersonation
 attacks.
 The solution presented here is intended for devices that have either a nonnetwork
 input or output interface, such as a camera, microphone, display screen, speaker, or
 blinking Light Emitting Diode (LED) light, that is able to send or receive dynamically
 generated messages of
 tens of bytes in length. Naturally, this solution may not be appropriate for very small
 sensors or actuators that have no user interface at all or for devices that are
 inaccessible to the user. We also assume that the OOB channel is at least partly
 automated (e.g., a camera scanning a bar code); thus, there is no need to absolutely
 minimize the length of the data transferred through the OOB channel. This differs, for
 example, from Bluetooth pairing ,
 where it is essential to minimize the length of the manually transferred or compared
 codes. The OOB messages in this specification are dynamically generated. Thus, we do not
 support static printed registration codes. One reason for requiring dynamic OOB messages
 is that the receipt of the OOB message authorizes the server to take ownership of the
 device. Dynamic OOB messages are more secure than static printed codes, which could be
 leaked and later misused.

 Terminology
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.
 In addition, this document frequently uses the following terms as they have been
 defined in :

 authenticator
 The entity initiating EAP authentication.
 peer
 The entity that responds to the authenticator. In , this entity is known as the supplicant. (We use the terms peer,
	device, and peer device interchangeably.)
 server
 The entity that terminates the EAP authentication method with the peer. In the
	case where no backend authentication server is used, the EAP server is part of the
	authenticator. In the case where the authenticator operates in pass-through mode, the
	EAP server is located on the backend authentication server.

 EAP-NOOB Method
 This section defines the EAP-NOOB method. The protocol is a generalized version of
 the original idea presented by Sethi et
 al..

 Protocol Overview
 One EAP-NOOB method execution spans two or more EAP conversations, called
	Exchanges in this specification. Each Exchange consists of several EAP
	request-response pairs. At least two separate EAP conversations are needed to give the
	human user time to deliver the OOB message between them.
 The overall protocol starts with the Initial Exchange, which comprises four EAP
	request-response pairs. In the Initial Exchange, the server allocates an identifier to
	the peer, and the server and peer negotiate the protocol version and cryptosuite
	(i.e., cryptographic algorithm suite), exchange nonces, and perform an Ephemeral
	Elliptic Curve Diffie-Hellman (ECDHE) key exchange. The user-assisted OOB Step then
	takes place. This step requires only one out-of-band message, either from the peer to
	the server or from the server to the peer. While waiting for the OOB Step action, the
	peer MAY probe the server by reconnecting to it with EAP-NOOB. If the
	OOB Step has already taken place, the probe leads to the Completion Exchange, which
	completes the mutual authentication and key confirmation. On the other hand, if the
	OOB Step has not yet taken place, the probe leads to the Waiting Exchange, and the
	peer will perform another probe after a server-defined minimum waiting time. The
	Initial Exchange and Waiting Exchange always end in EAP-Failure, while the Completion
	Exchange may result in EAP-Success. Once the peer and server have performed a
	successful Completion Exchange, both endpoints store the created association in
	persistent storage, and the OOB Step is not repeated. Thereafter, creation of new
	temporal keys, ECDHE rekeying, and updates of cryptographic algorithms can be achieved
	with the Reconnect Exchange.

 EAP-NOOB Server-Peer Association State Machine

 OOB Output/Initial Exchange/
 Waiting Exchange
 .-----.
 | v
 .------------------. Initial .------------------.
 | | Exchange | |
 .->| Unregistered (0) |---------------->|Waiting for OOB(1)|
 | | (ephemeral) | | (ephemeral) |
 | | | | |
 | '------------------' '------------------'
 | | | ^
 User Reset Completion | | |
 | Exchange | OOB OOB
 |<-------. .-------------------------' Input Reject/
 | | | | Initial
 | | | | Exchange
 | | v v |
 | .------------------. Completion .------------------.
		Exchange	
	Registered (4)	<----------------	OOB Received (2)
	(persistent)		(ephemeral)
'------------------' '------------------'			
	^		
Mobility/			
Timeout/ Reconnect			
Failure Exchange			
v			
.------------------.			
 '--| Reconnecting (3) |
 | (persistent) |
 | |
 '------------------'

 shows the association state
	machine, which is the same for the server and for the peer. (For readability, only the
	main state transitions are shown. The complete table of transitions can be found in
	 .) When the peer initiates the
	EAP-NOOB method, the server chooses the ensuing message exchange based on the
	combination of the server and peer states. The EAP server and peer are initially in
	the Unregistered (0) state, in which no state information needs to be stored. Before a
	successful Completion Exchange, the server-peer association state is ephemeral in both
	the server and peer (ephemeral states 0..2), and a timeout or error may cause one or
	both endpoints to go back to the Unregistered (0) state so that the Initial Exchange
	is
	repeated. After the Completion Exchange has resulted in EAP-Success, the association
	state becomes persistent (persistent states 3..4). Only user reset or memory failure
	can cause the return of the server or the peer from the persistent states to the
	ephemeral states and to the Initial Exchange.
 The server MUST NOT repeat a successful OOB Step with the same peer
	except if the association with the peer is explicitly reset by the user or lost due to
	failure of the persistent storage in the server. More specifically, once the
	association has entered the Registered (4) state, the server MUST NOT
	delete the association or go back to the ephemeral states 0..2 without explicit user
	approval. Similarly, the peer MUST NOT repeat the OOB Step unless the
	user explicitly deletes the association with the server from the peer or resets the
	peer to the Unregistered (0) state. The server and peer MAY implement
	user
	reset of the association by deleting the state data from that endpoint. If an endpoint
	continues to store data about the association after the user reset, its behavior
	 MUST be equivalent to having deleted the association data.
 It can happen that the peer accidentally (or through user reset) loses its
	persistent
	state and reconnects to the server without a previously allocated peer identifier. In
	that case, the server MUST treat the peer as a new peer. The server
	 MAY use auxiliary information, such as the PeerInfo field received in
	the Initial Exchange, to detect multiple associations with the same peer. However, it
	 MUST NOT delete or merge redundant associations without user or
	application approval because EAP-NOOB internally has no secure way of verifying that
	the two peers are the same physical device. Similarly, the server might lose the
	association state because of a memory failure or user reset. In that case, the only
	way to recover is that the user also resets the peer.
 A special feature of the EAP-NOOB method is that the server is not assumed to have
	any a priori knowledge of the peer. Therefore, the peer initially uses the generic
	identity string "noob@eap-noob.arpa" as its Network Access Identifier (NAI). The
	server then allocates a server-specific identifier to the peer. The generic NAI serves
	two purposes: firstly, it tells the server that the peer supports and expects the
	EAP-NOOB method; secondly, it allows routing of the EAP-NOOB sessions to a
	specific authentication server in an Authentication, Authorization, and Accounting
	(AAA) architecture.
 EAP-NOOB is an unusual EAP method in that the peer has to have multiple EAP
	conversations with the server before it can receive EAP-Success. The reason is that,
	while EAP allows delays between the request-response pairs, e.g., for repeated
	password entry, the user delays in OOB authentication can be much longer than in
	password trials. Moreover, EAP-NOOB supports peers with no input capability in the
	user interface (e.g., LED light bulbs). Since users cannot initiate the protocol in
	these devices, the devices have to perform the Initial Exchange opportunistically and
	hope for the OOB Step to take place within a timeout period (NoobTimeout), which is
	why the timeout needs to be several minutes rather than seconds. To support such
	high-latency OOB channels, the peer and server perform the Initial Exchange in one EAP
	conversation, then allow time for the OOB message to be delivered, and later perform
	the Waiting Exchange and Completion Exchange in different EAP conversations.

 Protocol Messages and Sequences
 This section defines the EAP-NOOB exchanges, which correspond to EAP conversations.
	The exchanges start with a common handshake, which determines the type of the
	following exchange. The common handshake messages and the subsequent messages for each
	exchange type are listed in the diagrams below. The diagrams also specify the data
	fields present in each message. Each exchange comprises multiple EAP request-response
	pairs and ends in either EAP-Failure, indicating that authentication is not (yet)
	successful, or in EAP-Success.

 Common Handshake in All EAP-NOOB Exchanges
 All EAP-NOOB exchanges start with common handshake messages. The handshake begins
	 with the identity request and response that are common to all EAP methods. Their
	 purpose is to enable the AAA architecture to route the EAP conversation to the EAP
	 server and to enable the EAP server to select the EAP method. The handshake then
	 continues with one EAP-NOOB request-response pair in which the server discovers the
	 peer identifier used in EAP-NOOB and the peer state.
 In more detail, each EAP-NOOB exchange begins with the authenticator sending an
	 EAP-Request/Identity packet to the peer. From this point on, the EAP conversation
	 occurs between the server and the peer, and the authenticator acts as a pass-through
	 device. The peer responds to the authenticator with an EAP-Response/Identity packet,
	 which contains the Network Access Identifier (NAI). The authenticator, acting as a
	 pass-through device, forwards this response and the following EAP conversation
	 between the peer and the AAA architecture. The AAA architecture routes the
	 conversation to a specific AAA server (called "EAP server" or simply "server" in
	 this specification) based on the realm part of the NAI. The server selects the
	 EAP-NOOB method based on the user part of the NAI, as defined in .
 After receiving the EAP-Response/Identity message, the server sends the first
	 EAP-NOOB request (Type=1) to the peer, which responds with the peer identifier
	 (PeerId) and state (PeerState) in the range 0..3. However, the peer
	 SHOULD omit the PeerId from the response (Type=1) when PeerState=0.
	 The server then chooses the EAP-NOOB exchange, i.e., the ensuing message sequence,
	 as explained below. The peer recognizes the exchange based on the message type field
	 (Type) of the next EAP-NOOB request received from the server.
 The server MUST determine the exchange type based on the
	 combination of the peer and server states as follows (also summarized in). If either the peer or server is in the
	 Unregistered (0) state and the other is in one of the ephemeral states (0..2), the
	 server chooses the Initial Exchange. If either the peer or server is in the OOB
	 Received (2) state and the other is either in the Waiting for OOB (1) or OOB
	 Received (2) state, the OOB Step has taken place and the server chooses the
	 Completion Exchange. If both the server and peer are in the Waiting for OOB (1)
	 state, the server chooses the Waiting Exchange. If the peer is in the Reconnecting
	 (3) state and the server is in the Registered (4) or Reconnecting (3) state, the
	 server chooses the Reconnect Exchange. All other state combinations are error
	 situations where user action is required, and the server SHOULD
	 indicate such errors to the peer with the error code 2002 (see). Note also that the peer MUST NOT initiate EAP-NOOB when the peer is in the Registered (4) state.

 Common Handshake in All EAP-NOOB Exchanges

EAP Peer Authenticator EAP Server
 | | |
 |<----------- EAP-Request/Identity -| |
 | |
 | |
 |------------ EAP-Response/Identity -------------->|
 | (NAI=noob@eap-noob.arpa) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=1) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=1,[PeerId],PeerState=1) |
 | |
 | continuing with exchange-specific messages... |

 Initial Exchange
 The Initial Exchange comprises the common handshake and two further EAP-NOOB
	 request-response pairs: one for version, cryptosuite, and parameter negotiation and
	 the other for the ECDHE key exchange. The first EAP-NOOB request (Type=2) from the
	 server contains a newly allocated PeerId for the peer and an optional NewNAI for
	 assigning a new NAI to the peer. The server allocates a new PeerId in the Initial
	 Exchange regardless of any old PeerId received in the previous response (Type=1).
	 The server also sends in the request a list of the protocol versions (Vers) and
	 cryptosuites (Cryptosuites) it supports, an indicator of the OOB channel directions
	 it supports (Dirs), and a ServerInfo object. The peer chooses one of the versions
	 and cryptosuites. The peer sends a response (Type=2) with the selected protocol
	 version (Verp), the received PeerId, the selected cryptosuite (Cryptosuitep), an
	 indicator of the OOB channel direction(s) selected by the peer (Dirp), and a
	 PeerInfo object. In the second EAP-NOOB request and response (Type=3), the server
	 and peer exchange the public components of their ECDHE keys and nonces
	 (PKs, Ns, PKp, and Np). The ECDHE keys MUST be based on the
	 negotiated
	 cryptosuite, i.e., Cryptosuitep. The Initial Exchange always ends with EAP-Failure
	 from the server because the authentication cannot yet be completed.

 Initial Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=2,Vers,PeerId,[NewNAI], |
 | Cryptosuites,Dirs,ServerInfo) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=2,Verp,PeerId,Cryptosuitep, |
 | Dirp,PeerInfo) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=3,PeerId,PKs,Ns,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=3,PeerId,PKp,Np) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 At the conclusion of the Initial Exchange, both the server and the peer move to
	 the Waiting for OOB (1) state.

 OOB Step
 The OOB Step, labeled as OOB Output and OOB Input in , takes place after the Initial
	 Exchange. Depending on the negotiated OOB channel direction, the peer or the server
	 outputs the OOB message as shown in Figures or
	 , respectively. The data fields are the
	 PeerId, the secret nonce Noob, and the cryptographic fingerprint Hoob. The contents
	 of the data fields are defined in . The OOB message is delivered to the other endpoint via a
	 user-assisted OOB channel.
 For brevity, we will use the terms OOB sender and OOB receiver in addition to the
	 already familiar EAP server and EAP peer. If the OOB message is sent in the
	 server-to-peer direction, the OOB sender is the server and the OOB receiver is the
	 peer. On the other hand, if the OOB message is sent in the peer-to-server direction,
	 the OOB sender is the peer and the OOB receiver is the server.

 OOB Step, from Peer to EAP Server

EAP Peer EAP Server
 | |
 |=================OOB=============================>|
 | (PeerId,Noob,Hoob) |
 | |

 OOB Step, from EAP Server to Peer

EAP Peer EAP Server
 | |
 |<================OOB==============================|
 | (PeerId,Noob,Hoob) |
 | |

 The OOB receiver MUST compare the received value of the
	 fingerprint Hoob (see) with a
	 value that it computed locally for the PeerID received. This integrity check ensures
	 that the endpoints agree on contents of the Initial Exchange. If the values are
	 equal, the receiver moves to the OOB Received (2) state. Otherwise, the receiver
	 MUST reject the OOB message. For usability reasons, the OOB receiver
	 SHOULD indicate the acceptance or rejection of the OOB message to the
	 user. The receiver SHOULD reject invalid OOB messages without
	 changing its state in the association state machine until an application-specific
	 number of invalid messages (OobRetries) has been reached; after which, the receiver
	 SHOULD consider it an error and go back to the Unregistered (0)
	 state.
 The server or peer MAY send multiple OOB messages with different
	 Noob values while in the Waiting for OOB (1) state. The OOB sender
	 SHOULD remember the Noob values until they expire and accept any one
	 of them in the following Completion Exchange. The Noob values sent by the server
	 expire after an application-dependent timeout (NoobTimeout), and the server
	 MUST NOT accept Noob values older than that in the Completion
	 Exchange. The RECOMMENDED value for NoobTimeout is 3600 seconds if
	 there are no application-specific reasons for making it shorter or longer. The Noob
	 values sent by the peer expire, as defined in .
 The OOB receiver does not accept further OOB messages after it has accepted one
	 and moved to the OOB Received (2) state. However, the receiver MAY
	 buffer redundant OOB messages in case an OOB message expiry or similar error
	 detected in the Completion Exchange causes it to return to the Waiting for OOB (1)
	 state. It is RECOMMENDED that the OOB receiver notifies the user
	 about redundant OOB messages, but it MAY instead discard them
	 silently.
 The sender will typically generate a new Noob, and therefore a new OOB message,
	 at constant time intervals (NoobInterval). The RECOMMENDED interval
	 is
 NoobInterval = NoobTimeout / 2
 in which case, the receiver of the OOB will at any given time
 accept either of the two latest Noob values. However, the timing of
 the Noob generation may also be based on user interaction or on
 implementation considerations.
 Even though not recommended (see),
	 this specification allows both directions to be negotiated (Dirp=3) for the OOB
	 channel. In that case, both sides SHOULD output the OOB message, and
	 it is up to the user to deliver at least one of them.
 The details of the OOB channel implementation including the message encoding are
	 defined by the application. gives an
	 example of how the OOB message can be encoded as a URL that may be embedded in a
	 dynamic QR code or NFC (Near Field Communication) tag.

 Completion Exchange
 After the Initial Exchange, if the OOB channel directions selected by the peer
	 include the peer-to-server direction, the peer SHOULD initiate the
	 EAP-NOOB method again after an applications-specific waiting time in order to probe
	 for completion of the OOB Step. If the OOB channel directions selected by the peer
	 include the server-to-peer direction and the peer receives the OOB message, it
	 SHOULD initiate the EAP-NOOB method immediately. Depending on the
	 combination of the peer and server states, the server continues with the Completion
	 Exchange or Waiting Exchange (see
	 on how the server makes this decision).
 The Completion Exchange comprises the common handshake and one or two further
	 EAP-NOOB request-response pairs. If the peer is in the Waiting for OOB (1) state,
	 the OOB message has been sent in the peer-to-server direction. In that case, only
	 one request-response pair (Type=6) takes place. In the request, the server sends the
	 NoobId value (see), which the
	 peer uses to identify the exact OOB message received by the server. On the other
	 hand, if the peer is in the OOB Received (2) state, the direction of the OOB message
	 is from server to peer. In this case, two request-response pairs (Type=5 and Type=6)
	 are needed. The purpose of the first request-response pair (Type=5) is that it
	 enables the server to discover NoobId, which identifies the exact OOB message
	 received by the peer. The server returns the same NoobId to the peer in the latter
	 request.
 In the last request-response pair (Type=6) of the Completion Exchange, the server
	 and peer exchange message authentication codes. Both sides MUST
	 compute the keys Kms and Kmp, as defined in , and the message authentication codes MACs and MACp, as defined
	 in . Both sides
	 MUST
	 compare the received message authentication code with a locally computed value. If
	 the peer finds that it has received the correct value of MACs and the server finds
	 that it has received the correct value of MACp, the Completion Exchange ends in
	 EAP-Success.
	 Otherwise, the endpoint where the comparison fails indicates this with
	 an error message (error code 4001, see), and the Completion Exchange ends in EAP-Failure.
 After the successful Completion Exchange, both the server and the peer move to
	 the
	 Registered (4) state. They also derive the output keying material and store the
	 persistent EAP-NOOB association state, as defined in Sections and .
 It is possible that the OOB message expires before it is received. In that case,
	 the sender of the OOB message no longer recognizes the NoobId that it receives in
	 the Completion Exchange. Another reason why the OOB sender might not recognize the
	 NoobId is if the received OOB message was spoofed and contained an
	 attacker-generated Noob value. The recipient of an unrecognized NoobId indicates
	 this with an error message (error code 2003, see), and the Completion Exchange ends in EAP-Failure. The recipient
	 of the error message 2003 moves back to the Waiting for OOB (1) state. This state
	 transition is called OOB Reject in (even though it really is a specific type of failed Completion
	 Exchange). On the other hand, the sender of the error message stays in its
	 previous state.
 Although it is not expected to occur in practice, poor user interface design
	 could lead to two OOB messages delivered simultaneously, one from the peer to the
	 server and the other from the server to the peer. The server detects this event in
	 the beginning of the Completion Exchange by observing that both the server and peer
	 are in the OOB Received (2) state. In that case, as a tiebreaker, the server
	 MUST behave as if only the server-to-peer message had been
	 delivered.

 Completion Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- [EAP-Request/EAP-NOOB] ------------|
 | (Type=5,PeerId) |
 | |
 | |
 |------------ [EAP-Response/EAP-NOOB] ---------->|
 | (Type=5,PeerId,NoobId) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=6,PeerId,NoobId,MACs) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=6,PeerId,MACp) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

 Waiting Exchange
 As explained in , the peer
	 SHOULD probe the server for completion of the OOB Step. When the
	 combination of the peer and server states indicates that the OOB message has not yet
	 been delivered, the server chooses the Waiting Exchange (see on how the server makes this decision).
	 The Waiting Exchange comprises the common handshake and one further request-response
	 pair, and it always ends in EAP-Failure.
 In order to limit the rate at which peers probe the server, the server
	 MAY send to the peer either in the Initial Exchange or in the Waiting
	 Exchange a minimum time to wait before probing the server again. A peer that has not
	 received an OOB message SHOULD wait at least the server-specified
	 minimum waiting time in seconds (SleepTime) before initiating EAP again with the
	 same server. The peer uses the latest SleepTime value that it has received in or
	 after the Initial Exchange. If the server has not sent any SleepTime value, the peer
	 MUST wait for an application-specified minimum time
	 (SleepTimeDefault).
 After the Waiting Exchange, the peer MUST discard (from its local
	 ephemeral storage) Noob values that it has sent to the server in OOB messages that
	 are older than the application-defined timeout NoobTimeout (see). The peer SHOULD discard such
	 expired Noob values even if the probing failed because of, e.g., failure to connect
	 to the EAP server or an incorrect message authentication code. The timeout of
	 peer-generated Noob values is defined like this in order to allow the peer to probe
	 the server once after it has waited for the server-specified SleepTime.
 If the server and peer have negotiated to use only the server-to-peer direction
	 for the OOB channel (Dirp=2), the peer SHOULD nevertheless probe the
	 server. The purpose of this is to keep the server informed about the peers that are
	 still waiting for OOB messages. The server MAY set SleepTime to a
	 high number (e.g., 3600) to prevent the peer from probing the server frequently.

 Waiting Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=4,PeerId,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=4,PeerId) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Protocol Data Fields
 This section defines the various identifiers and data fields used in the EAP-NOOB
	method.

 Peer Identifier and NAI
 The server allocates a new peer identifier (PeerId) for the peer in the Initial
	 Exchange. The peer identifier MUST follow the syntax of the
	 utf8-username specified in . The server
	 MUST generate the identifiers in such a way that they do not repeat
	 and cannot be guessed by the peer or third parties before the server sends them to
	 the peer in the Initial Exchange. One way to generate the identifiers is to choose a
	 random 16-byte identifier and to base64url encode it without padding into a 22-character ASCII string. Another way to
	 generate the identifiers is to choose a random 22-character alphanumeric ASCII
	 string. It is RECOMMENDED to not use identifiers longer than this
	 because they result in longer OOB messages.
 The peer uses the allocated PeerId to identify itself to the server in the
	 subsequent exchanges. The peer MUST copy the PeerId byte by byte from
	 the message where it was allocated, and the server MUST perform a
	 byte-by-byte comparison between the received and the previously allocated PeerID.
	 The peer sets the PeerId value in response type 1 as follows. As stated in , when the peer is in the Unregistered
	 (0) state, it SHOULD omit the PeerId from response type 1. When the
	 peer is in one of the states 1..2, it MUST use the PeerId that the
	 server assigned to it in the latest Initial Exchange. When the peer is in one of the
	 persistent states 3..4, it MUST use the PeerId from its persistent
	 EAP-NOOB association. (The PeerId is written to the association when the peer moves
	 to the Registered (4) state after a Completion Exchange.)
 The default NAI for the peer is "noob@eap-noob.arpa". The peer implementation
	 MAY allow the user or application to configure a different NAI, which
	 overrides the default NAI. Furthermore, the server MAY assign a new
	 NAI to the peer in the Initial Exchange or Reconnect Exchange in the NewNAI field
	 of request types 2 and 7 to override any previous NAI value. When the peer is in
	 the Unregistered (0) state, or when the peer is in one of the states 1..2 and the
	 server did not send a NewNAI in the latest Initial Exchange, the peer
	 MUST use the configured NAI or, if it does not exist, the default
	 NAI. When the peer is in one of the states 1..2 and the server sent a NewNAI in the
	 latest Initial Exchange, the peer MUST use this server-assigned NAI.
	 When the peer moves to the Registered (4) state after the Completion Exchange, it
	 writes to the persistent EAP-NOOB association the same NAI value that it used in the
	 Completion Exchange. When the peer is in the Reconnecting (3) or Registered (4)
	 state, it MUST use the NAI from its persistent EAP-NOOB association.
	 When the server sends NewNAI in the Reconnect Exchange, the peer writes its value to
	 the persistent EAP-NOOB association when it moves from the Reconnecting (3) state to
	 the Registered (4) state. All the NAI values MUST follow the syntax
	 specified in .
 The purpose of the server-assigned NAI is to enable more flexible routing of the
	 EAP sessions over the AAA infrastructure, including roaming scenarios (see). Moreover, some authenticators or AAA servers
	 use the realm part of the assigned NAI to determine peer-specific connection
	 parameters, such as isolating the peer to a specific VLAN. On the other hand, the
	 user- or application-configured NAI enables registration of new devices while
	 roaming. It also enables manufacturers to set up their own AAA servers for
	 bootstrapping of new peer devices.
 The peer's PeerId and server-assigned NAI are ephemeral until a successful
	 Completion Exchange takes place. Thereafter, the values become parts of the
	 persistent EAP-NOOB association until the user resets the peer and server or
	 until a new NAI is assigned in the Reconnect Exchange.

 Message Data Fields
 defines the data fields in the
	 protocol messages. The in-band messages are formatted as JSON objects in UTF-8 encoding. The JSON member names are in
	 the left-hand column of the table.

 Message Data Fields

 Data Field
 Description

 Vers, Verp
 EAP-NOOB protocol versions supported by the EAP server and
		the protocol version chosen by the peer. Vers is a JSON array of unsigned
		integers, and Verp is an unsigned integer. Example values are "[1]" and "1",
		respectively.

 PeerId
 Peer identifier, as defined in .

 NAI, NewNAI
 Peer NAI and server-assigned new peer NAI, as defined in
		 .

 Type
 EAP-NOOB message type. The type is an integer in the range
		0..9. EAP-NOOB requests and the corresponding responses share the same type
		value.

 PeerState
 Peer state is an integer in the range 0..4 (see). However, only values 0..3 are
		ever sent in the protocol messages.

 PKs, PKp
 The public components of the ECDHE keys of the server and
		peer. PKs and PKp are sent in the JSON Web Key (JWK) format . The detailed format of the JWK object is
		defined by the cryptosuite.

 Cryptosuites, Cryptosuitep
 The identifiers of cryptosuites supported by the server and
		of the cryptosuite selected by the peer. The server-supported cryptosuites in
		Cryptosuites are formatted as a JSON array of the identifier integers. The
		server MUST send a nonempty array with no repeating elements,
		ordered by decreasing priority. The peer MUST respond with
		exactly one suite in the Cryptosuitep value, formatted as an identifier
		integer. Mandatory-to-implement cryptosuites and the registration procedure
		for new cryptosuites are specified in . Example values are "[1]" and "1", respectively.

 Dirs, Dirp
 An integer indicating the OOB channel directions supported by
		the server and the directions selected by the peer. The possible values are
		1=peer-to-server, 2=server-to-peer, and 3=both directions.

 Dir
 The actual direction of the OOB message (1=peer-to-server,
		2=server-to-peer). This value is not sent over any communication channel, but
		it is included in the computation of the cryptographic fingerprint Hoob.

 Ns, Np
 32-byte nonces for the Initial Exchange.

 ServerInfo
 This field contains information about the server to be passed
		from the EAP method to the application layer in the peer. The information is
		specific to the application or to the OOB channel, and it is encoded as a JSON
		object of at most 500 bytes. It could include, for example, the access-network
		name and server name, a Uniform Resource Locator (URL) , or some other information that helps the
		user deliver the OOB message to the server through the out-of-band
		channel.

 PeerInfo
 This field contains information about the peer to be passed
		from the EAP method to the application layer in the server. The information is
		specific to the application or to the OOB channel, and it is encoded as a JSON
		object of at most 500 bytes. It could include, for example, the peer brand,
		model, and serial number, which help the user distinguish between devices
		and deliver the OOB message to the correct peer through the out-of-band
		channel.

 SleepTime
 The number of seconds for which the peer MUST NOT start a new execution of the EAP-NOOB method with the
		authenticator, unless the peer receives the OOB message or the sending is
		triggered by an application-specific user action. The server can use this
		field to limit the rate at which peers probe it. SleepTime is an unsigned
		integer in the range 0..3600.

 Noob
 16-byte secret nonce sent through the OOB channel and used
		for the session key derivation. The endpoint that received the OOB message
		uses this secret in the Completion Exchange to authenticate the exchanged key
		to the endpoint that sent the OOB message.

 Hoob
 16-byte cryptographic fingerprint (i.e., hash value) computed
		from all the parameters exchanged in the Initial Exchange and in the OOB
		message. Receiving this fingerprint over the OOB channel guarantees the
		integrity of the key exchange and parameter negotiation. Hence, it
		authenticates the exchanged key to the endpoint that receives the OOB
		message.

 NoobId
 16-byte identifier for the OOB message, computed with a
		one-way function from the nonce Noob in the message.

 MACs, MACp
 Message authentication codes (HMAC) for mutual
		authentication, key confirmation, and integrity check on the exchanged
		information. The input to the HMAC is defined below, and the key for the HMAC
		is defined in .

 Ns2, Np2
 32-byte nonces for the Reconnect Exchange.

 KeyingMode
 Integer indicating the key derivation method. 0 in the
		Completion Exchange, and 1..3 in the Reconnect Exchange.

 PKs2, PKp2
 The public components of the ECDHE keys of the server and
		peer for the Reconnect Exchange. PKp2 and PKs2 are sent in the JSON Web Key
		(JWK) format . The detailed format of
		the JWK object is defined by the cryptosuite.

 MACs2, MACp2
 Message authentication codes (HMAC) for mutual
		authentication, key confirmation, and integrity check on the Reconnect
		Exchange. The input to the HMAC is defined below, and the key for the HMAC is
		defined in .

 ErrorCode
 Integer indicating an error condition. Defined in .

 ErrorInfo
 Textual error message for logging and debugging purposes. A
		UTF-8 string of at most 500 bytes.

 It is RECOMMENDED for servers to support both OOB channel
	 directions (Dirs=3) unless the type of the OOB channel limits them to one direction
	 (Dirs=1 or Dirs=2). On the other hand, it is RECOMMENDED that the
	 peer selects only one direction (Dirp=1 or Dirp=2) even when both directions
	 (Dirp=3) would be technically possible. The reason is that, if value 3 is
	 negotiated, the user may be presented with two OOB messages, one for each direction,
	 even though only one of them needs to be delivered. This can be confusing to the
	 user. Nevertheless, the EAP-NOOB protocol is designed to also cope with the value 3;
	 in which case, it uses the first delivered OOB message. In the unlikely case of
	 simultaneously delivered OOB messages, the protocol prioritizes the server-to-peer
	 direction.
 The nonces in the in-band messages (Ns, Np, Ns2, Np2) are 32-byte fresh random
	 byte strings, and the secret nonce Noob is a 16-byte fresh random byte string. All
	 the nonces are generated by the endpoint that sends the message.
 The fingerprint Hoob and the identifier NoobId are computed with the
	 cryptographic hash function H, which is specified in the negotiated cryptosuite and
	 truncated to the 16 leftmost bytes of the output. The message authentication codes
	 (MACs, MACp, MACs2, MACp2) are computed with the function HMAC, which is the hashed
	 message authentication code based on the
	 cryptographic hash function H and truncated to the 32 leftmost bytes of the
	 output.
 The inputs to the hash function for computing the fingerprint Hoob and to the
	 HMAC for computing MACs, MACp, MACs2, and MACp2 are JSON arrays containing a fixed
	 number (17) of elements. The array elements MUST be copied to
	 the
	 array verbatim from the sent and received in-band messages. When the element is a
	 JSON object, its members MUST NOT be reordered or reencoded.
	 White space MUST NOT be added anywhere in the JSON structure.
	 Implementers should check that their JSON library copies the elements as UTF-8
	 strings, does not modify them in any way, and does not add white space to
	 the HMAC input.
 The inputs for computing the fingerprint and message authentication codes are the
	 following:

Hoob = H(Dir,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

NoobId = H("NoobId",Noob).

MACs = HMAC(Kms; 2,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

MACp = HMAC(Kmp; 1,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

MACs2 = HMAC(Kms2; 2,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo],
Cryptosuitep,"",NAI,[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],Np2,"")

MACp2 = HMAC(Kmp2; 1,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo],
Cryptosuitep,"",NAI,[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],Np2,"")

 The inputs denoted with "" above are not present, and the values in brackets
 [] are optional. Both kinds of missing input values are represented by empty strings
	 "" in the HMAC input (JSON array). The NAI included in the inputs is the NAI value
	 that will be in the persistent EAP-NOOB association if the Completion Exchange or
	 Reconnect Exchange succeeds.
	 In the Completion Exchange, the NAI is the NewNAI value
	 assigned by the server in the preceding Initial Exchange or, if no NewNAI was sent,
	 the NAI used by the client in the Initial Exchange. In the Reconnect Exchange,
	 the NAI is the NewNAI value assigned by the server in the same Reconnect Exchange
	 or, if
	 no NewNAI was sent, the unchanged NAI from the persistent EAP-NOOB association. Each
	 of the values in brackets for the computation of Macs2 and Macp2 MUST
	 be included if it was sent or received in the same Reconnect Exchange; otherwise,
	 the value is replaced by an empty string "".
 The parameter Dir indicates the direction in which the OOB message containing the
	 Noob value is being sent (1=peer-to-server, 2=server-to-peer). This field is
	 included in the Hoob input to prevent the user from accidentally delivering the OOB
	 message back to its originator in the rare cases where both OOB directions have been
	 negotiated. The keys (Kms, Kmp, Kms2, and Kmp2) for the HMACs are defined in .
 The nonces (Ns, Np, Ns2, Np2, and Noob) and the hash value (NoobId)
	 MUST be base64url encoded
	 when they are used as input to the cryptographic functions H or HMAC. These values
	 and the message authentication codes (MACs, MACp, MACs2, and MACp2)
	 MUST
	 also be base64url encoded when they are sent as JSON strings in the in-band
	 messages. The values Noob and Hoob in the OOB channel MAY be
	 base64url encoded if that is appropriate for the application and the OOB channel.
	 All base64url encoding is done without padding. The base64url-encoded values will
	 naturally consume more space than the number of bytes specified above (e.g., a
	 22-character
	 string for a 16-byte nonce and a 43-character string for a 32-byte nonce or message
	 authentication code). In the key derivation in , on the other hand, the unencoded nonces (raw bytes) are used as
	 input to the key derivation function.
 The ServerInfo and PeerInfo are JSON objects with UTF-8 encoding. The length of
	 either encoded object as a byte array MUST NOT exceed 500 bytes. The
	 format and semantics of these objects MUST be defined by the
	 application that uses the EAP-NOOB method.

 Fast Reconnect and Rekeying
 EAP-NOOB implements fast reconnect (), which avoids repeated use of the user-assisted OOB channel.
 The rekeying and the Reconnect Exchange may be needed for several reasons. New EAP
	output values Main Session Key (MSK) and Extended Main Session Key (EMSK) may be
	needed because of mobility or timeout of session keys. Software or hardware failure or
	user action may also cause the authenticator, EAP server, or peer to lose its
	nonpersistent state data. The failure would typically be detected by the peer or
	authenticator when session keys are no longer accepted by the other endpoint. Changes
	in the supported cryptosuites in the EAP server or peer may also cause the need for a
	new key exchange. When the EAP server or peer detects any one of these events, it
	 MUST change from the Registered (4) state to the Reconnecting (3)
	state. These state
	transitions are labeled Mobility/Timeout/Failure in . The EAP-NOOB method will then perform the Reconnect Exchange the
	next time when EAP is triggered.

 Persistent EAP-NOOB Association
 To enable rekeying, the EAP server and peer store the session state in persistent
	 memory after a successful Completion Exchange. This state data, called "persistent
	 EAP-NOOB association", MUST include at least the data fields shown in
	 . They are used for identifying and
	 authenticating the peer in the Reconnect Exchange. When a persistent EAP-NOOB
	 association exists, the EAP server and peer are in the Registered (4) state or
	 Reconnecting (3) state, as shown in .

 Persistent EAP-NOOB Association

 Data Field
 Value
 Type

 PeerId
 Peer identifier allocated by server
 UTF-8 string (typically 22 ASCII characters)

 Verp
 Negotiated protocol version
 integer

 Cryptosuitep
 Negotiated cryptosuite
 integer

 CryptosuitepPrev (at peer only)
 Previous cryptosuite
 integer

 NAI
 NAI assigned by the server or configured by the user or the
		default NAI "noob@eap-noob.arpa"
 UTF-8 string

 Kz
 Persistent key material
 32 bytes

 KzPrev (at peer only)
 Previous Kz value
 32 bytes

 Reconnect Exchange
 The server chooses the Reconnect Exchange when both the peer and the server are
	 in a persistent state and fast reconnection is needed (see for details).
 The Reconnect Exchange comprises the common handshake and three further EAP-NOOB
	 request-response pairs: one for cryptosuite and parameter negotiation, another for
	 the nonce and ECDHE key exchange, and the last one for exchanging message
	 authentication codes. In the first request and response (Type=7), the server and peer
	 negotiate a protocol version and cryptosuite in the same way as in the Initial
	 Exchange. The server SHOULD NOT offer and the peer MUST NOT accept protocol versions or cryptosuites that it knows to be weaker than
	 the one currently in the Cryptosuitep field of the persistent EAP-NOOB association.
	 The server SHOULD NOT needlessly change the cryptosuites it offers to
	 the same peer because peer devices may have limited ability to update their
	 persistent storage. However, if the peer has different values in the Cryptosuitep
	 and CryptosuitepPrev fields, it SHOULD also accept offers that are
	 not weaker than CryptosuitepPrev. Note that Cryptosuitep and CryptosuitePrev from
	 the persistent EAP-NOOB association are only used to support the negotiation as
	 described above; all actual cryptographic operations use the newly negotiated
	 cryptosuite. The request and response (Type=7) MAY additionally
	 contain PeerInfo and ServerInfo objects.
 The server then determines the KeyingMode (defined in) based on changes in the negotiated
	 cryptosuite and whether it desires to achieve forward secrecy or not. The server
	 SHOULD only select KeyingMode 3 when the negotiated cryptosuite
	 differs from the Cryptosuitep in the server's persistent EAP-NOOB association,
	 although it is technically possible to select this value without changing the
	 cryptosuite. In the second request and response (Type=8), the server informs the
	 peer about the KeyingMode and the server and peer exchange nonces (Ns2, Np2). When
	 KeyingMode is 2 or 3 (rekeying with ECDHE), they also exchange public components of
	 ECDHE keys (PKs2, PKp2). The server ECDHE key MUST be fresh, i.e.,
	 not previously used with the same peer, and the peer ECDHE key SHOULD
	 be fresh, i.e., not previously used.
 In the third and final request and response (Type=9), the server and peer
	 exchange message authentication codes. Both sides MUST compute the
	 keys Kms2 and Kmp2, as defined in ,
	 and the message authentication codes MACs2 and MACp2, as defined in . Both sides MUST
	 compare the received message authentication code with a locally computed value.
 The rules by which the peer compares the received MACs2 are nontrivial because,
	 in addition to authenticating the current exchange, MACs2 may confirm the success or
	 failure of a recent cryptosuite upgrade. The peer processes the final request
	 (Type=9) as follows:

	 The peer first compares the received MACs2 value with one it computed using
	 the Kz stored in the persistent EAP-NOOB association. If the received and computed
	 values match, the peer deletes any data stored in the CryptosuitepPrev and KzPrev
	 fields of the persistent EAP-NOOB association. It does this because the received
	 MACs2 confirms that the peer and server share the same Cryptosuitep and Kz, and
	 any previous values must no longer be accepted.
 On the other hand, if the peer finds that the received MACs2 value does not
	 match the one it computed locally with Kz, the peer checks whether the KzPrev
	 field in the persistent EAP-NOOB association stores a key. If it does, the peer
	 repeats the key derivation () and
	 local MACs2 computation ()
	 using KzPrev in place of Kz. If this second computed MACs2 matches the received
	 value, the match indicates synchronization failure caused by the loss of the last
	 response (Type=9) in a previously attempted cryptosuite upgrade. In this case, the
	 peer rolls back that upgrade by overwriting Cryptosuitep with CryptosuitepPrev and
	 Kz with KzPrev in the persistent EAP-NOOB association. It also clears the
	 CryptosuitepPrev and KzPrev fields.
 If the received MACs2 matched one of the locally computed values, the peer
	 proceeds to send the final response (Type=9). The peer also moves to the
	 Registered (4) state. When KeyingMode is 1 or 2, the peer stops here. When
	 KeyingMode is 3, the peer also updates the persistent EAP-NOOB association with
	 the negotiated Cryptosuitep and the newly derived Kz value. To prepare for
	 possible synchronization failure caused by the loss of the final response (Type=9)
	 during cryptosuite upgrade, the peer copies the old Cryptosuitep and Kz values in
	 the persistent EAP-NOOB association to the CryptosuitepPrev and KzPrev fields.
 Finally, if the peer finds that the received MACs2 does not match either of
	 the two values that it computed locally (or one value if no KzPrev was stored),
	 the peer sends an error message (error code 4001, see), which causes the Reconnect Exchange
	 to end in EAP-Failure.

 The server rules for processing the final message are simpler than the peer rules
	 because the server does not store previous keys and it never rolls back a
	 cryptosuite upgrade. Upon receiving the final response (Type=9), the server compares
	 the received value of MACp2 with one it computes locally. If the values match, the
	 Reconnect Exchange ends in EAP-Success. When KeyingMode is 3, the server also
	 updates Cryptosuitep and Kz in the persistent EAP-NOOB association. On the other
	 hand, if the server finds that the values do not match, it sends an error message
	 (error code 4001), and the Reconnect Exchange ends in EAP-Failure.
 The endpoints MAY send updated NewNAI, ServerInfo, and PeerInfo
	 objects in the Reconnect Exchange. When there is no update to the values, they
	 SHOULD omit this information from the messages. If the NewNAI was
	 sent, each side updates NAI in the persistent EAP-NOOB association when moving to
	 the Registered (4) state.

 Reconnect Exchange

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=7,Vers,PeerId,Cryptosuites, |
 | [NewNAI],[ServerInfo]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=7,Verp,PeerId,Cryptosuitep,[PeerInfo])|
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=8,PeerId,KeyingMode,[PKs2],Ns2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=8,PeerId,[PKp2],Np2) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=9,PeerId,MACs2) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=9,PeerId,MACp2) |
 | |
 | |
 |<----------- EAP-Success -------------------------|
 | |

 User Reset
 As shown in the association state machine in , the only specified way for the association to return from the
	 Registered (4) state to the Unregistered (0) state is through user-initiated reset.
	 After the reset, a new OOB message will be needed to establish a new association
	 between the EAP server and peer. Typical situations in which the user reset is
	 required are when the other side has accidentally lost the persistent EAP-NOOB
	 association data or when the peer device is decommissioned.
 The server could detect that the peer is in the Registered or Reconnecting state,
	 but the server itself is in one of the ephemeral states 0..2 (including situations
	 where the server does not recognize the PeerId). In this case, effort should be made
	 to recover the persistent server state, for example, from a backup storage --
	 especially if many peer devices are similarly affected. If that is not possible, the
	 EAP server SHOULD log the error or notify an administrator. The only
	 way to continue from such a situation is by having the user reset the peer
	 device.
 On the other hand, if the peer is in any of the ephemeral states 0..2, including
	 the Unregistered state, the server will treat the peer as a new peer device and
	 allocate a new PeerId to it. The PeerInfo can be used by the user as a clue to which
	 physical device has lost its state. However, there is no secure way of matching the
	 "new" peer with the old PeerId without repeating the OOB Step. This situation will
	 be resolved when the user performs the OOB Step and thus identifies the physical
	 peer device. The server user interface MAY support situations where
	 the "new" peer is actually a previously registered peer that has been reset by a
	 user or otherwise lost its persistent data. In those cases, the user could choose to
	 merge the new peer identity with the old one in the server. The alternative is to
	 treat the device just like a new peer.

 Key Derivation
 EAP-NOOB derives the EAP output values MSK and EMSK and other secret keying
	material from the output of an Ephemeral Elliptic Curve Diffie-Hellman (ECDHE)
	algorithm following the NIST specification .
	In NIST terminology, we use a C(2e, 0s, ECC CDH) scheme, i.e., two ephemeral keys and
	no static keys. In the Initial Exchange and Reconnect Exchange, the server and peer
	compute the ECDHE shared secret Z, as defined in Section 6.1.2 of the NIST specification . In the Completion
	Exchange and
	Reconnect Exchange, the server and peer compute the secret keying material from Z
	with the one-step key derivation function (KDF) defined in Section 5.8.2.1 of the NIST
	specification. The auxiliary function H is a hash function, and it is taken from the
	negotiated cryptosuite.

 Keying Modes

 KeyingMode
 Description

 0
 Completion Exchange (always with ECDHE)

 1
 Reconnect Exchange, rekeying without ECDHE

 2
 Reconnect Exchange, rekeying with ECHDE, no change in
	 cryptosuite

 3
 Reconnect Exchange, rekeying with ECDHE, new cryptosuite
	 negotiated

 The key derivation has four different modes (KeyingMode), which are specified in
	 . defines the inputs to KDF in each KeyingMode.
 In the Completion Exchange (KeyingMode=0), the input Z comes from the preceding
	Initial exchange. The KDF takes some additional inputs (FixedInfo), for which we use
	the
	concatenation format defined in Section
	5.8.2.1.1 of the NIST specification . FixedInfo consists of the AlgorithmId,
	PartyUInfo, PartyVInfo, and SuppPrivInfo fields. The first three fields are
	fixed-length bit strings, and SuppPrivInfo is a variable-length string with a one-byte
	Datalength counter. AlgorithmId is the fixed-length, 8-byte ASCII string "EAP-NOOB".
	The other input values are the server and peer nonces. In the Completion Exchange, the
	inputs also include the secret nonce Noob from the OOB message.
 In the simplest form of the Reconnect Exchange (KeyingMode=1), fresh nonces are
	exchanged, but no ECDHE keys are sent. In this case, input Z to the KDF is replaced
	with the shared key Kz from the persistent EAP-NOOB association. The result is
	rekeying without the computational cost of the ECDHE exchange but also without
	forward secrecy.
 When forward secrecy is desired in the Reconnect Exchange (KeyingMode=2 or
	KeyingMode=3), both nonces and ECDHE keys are exchanged. Input Z is the fresh shared
	secret from the ECDHE exchange with PKs2 and PKp2. The inputs also include the shared
	secret Kz from the persistent EAP-NOOB association. This binds the rekeying output to
	the previously authenticated keys.

 Key Derivation Input

 KeyingMode
 KDF input field
 Value
 Length (bytes)

 0 Completion
 Z
 ECDHE shared secret from PKs and PKp
 variable

 AlgorithmId
 "EAP-NOOB"
 8

 PartyUInfo
 Np
 32

 PartyVInfo
 Ns
 32

 SuppPubInfo
 (not allowed)

 SuppPrivInfo
 Noob
 16

 1 Reconnect, rekeying without ECDHE
 Z
 Kz
 32

 AlgorithmId
 "EAP-NOOB"
 8

 PartyUInfo
 Np2
 32

 PartyVInfo
 Ns2
 32

 SuppPubInfo
 (not allowed)

 SuppPrivInfo
 (null)
 0

 2 or 3 Reconnect, rekeying, with ECDHE, same or new cryptosuite
 Z
 ECDHE shared secret from PKs2 and PKp2
 variable

 AlgorithmId
 "EAP-NOOB"
 8

 PartyUInfo
 Np2
 32

 PartyVInfo
 Ns2
 32

 SuppPubInfo
 (not allowed)

 SuppPrivInfo
 Kz
 32

 defines how the output
	bytes of the KDF are used. In addition to the EAP output values MSK and EMSK, the
	server and peer derive another shared secret key AMSK (Application Main Session Key),
	which MAY be used for
	application-layer security. Further output bytes are used internally by EAP-NOOB for
	the message authentication keys (Kms, Kmp, Kms2, and Kmp2).
 The Completion Exchange (KeyingMode=0) produces the shared secret Kz, which the
	server and peer store in the persistent EAP-NOOB association. When a new cryptosuite
	is negotiated in the Reconnect Exchange (KeyingMode=3), it similarly produces a new
	Kz. In that case, the server and peer update both the cryptosuite and Kz in the
	persistent EAP-NOOB association. Additionally, the peer stores the previous
	Cryptosuitep and Kz values in the CryptosuitepPrev and KzPrev fields of the persistent
	EAP-NOOB association.

 Key Derivation Output

 KeyingMode
 KDF output bytes
 Used as
 Length (bytes)

 0 Completion
 0..63
 MSK
 64

 64..127
 EMSK
 64

 128..191
 AMSK
 64

 192..223
 MethodId
 32

 224..255
 Kms
 32

 256..287
 Kmp
 32

 288..319
 Kz
 32

 1 or 2 Reconnect, rekeying without ECDHE, or with ECDHE and unchanged cryptosuite
 0..63
 MSK
 64

 64..127
 EMSK
 64

 128..191
 AMSK
 64

 192..223
 MethodId
 32

 224..255
 Kms2
 32

 256..287
 Kmp2
 32

 3 Reconnect, rekeying with ECDHE, new cryptosuite
 0..63
 MSK
 64

 64..127
 EMSK
 64

 128..191
 AMSK
 64

 192..223
 MethodId
 32

 224..255
 Kms2
 32

 256..287
 Kmp2
 32

 288..319
 Kz
 32

 Finally, every EAP method must export a Server-Id, Peer-Id, and Session-Id . In EAP-NOOB, the exported Peer-Id is the PeerId
	that the server has assigned to the peer. The exported Server-Id is a zero-length
	string (i.e., null string) because EAP-NOOB neither knows nor assigns any server
	identifier.
The exported Session-Id is created by concatenating the one-byte Type-Code 0x38 (decimal value 56) with the
MethodId, which is obtained from the KDF output, as shown in .

 Error Handling
 Various error conditions in EAP-NOOB are handled by sending an error notification
	message (Type=0) instead of a next EAP request or response message. Both the EAP
	server and the peer may send the error notification, as shown in Figures and . After sending or receiving an error notification, the server
	 MUST send an EAP-Failure (as required by). The notification MAY contain an
	ErrorInfo field, which is a UTF-8-encoded text string with a maximum length of 500
	bytes. It is used for sending descriptive information about the error for logging and
	debugging purposes.

 Error Notification from Server to Peer

EAP Peer EAP Server

 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 Error Notification from Peer to Server

EAP Peer EAP Server

 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

 After the exchange fails due to an error notification, the server and peer set the
	association state as follows. In the Initial Exchange, both the sender and recipient
	of the error notification MUST set the association state to the
	Unregistered (0) state. In the Waiting Exchange and Completion Exchange, each side
	 MUST remain in its old state as if the failed exchange had not taken
	place, with the exception that the recipient of error code 2003 processes it as
	specified in . In the Reconnect
	Exchange, both sides MUST set the association state to the Reconnecting
	(3) state.
 Errors that occur in the OOB channel are not explicitly notified in-band.

 Invalid Messages
 If the NAI structure is invalid, the server SHOULD send the error
	 code 1001 to the peer. The recipient of an EAP-NOOB request or response
	 SHOULD send the following error codes back to the sender: 1002 if it
	 cannot parse the message as a JSON object or the top-level JSON object has missing
	 or unrecognized members; 1003 if a data field has an invalid value, such as an
	 integer out of range, and there is no more specific error code available; 1004 if
	 the received message type was unexpected in the current state; 2004 if the PeerId
	 has an unexpected value; 2003 if the NoobId is not recognized; and 1005 if the ECDHE
	 key is invalid.

 Unwanted Peer
 The preferred way for the EAP server to rate limit EAP-NOOB connections from a
	 peer is to use the SleepTime parameter in the Waiting Exchange. However, if the EAP
	 server receives repeated EAP-NOOB connections from a peer that apparently should
	 not connect to this server, the server MAY indicate that the
	 connections are unwanted by sending the error code 2001. After receiving this error
	 message, the peer MAY refrain from reconnecting to the same EAP
	 server, and, if possible, both the EAP server and peer SHOULD
	 indicate
	 this error condition to the user or server administrator. However, in order to avoid
	 persistent denial of service, peer devices that are unable to alert a user
	 SHOULD continue to try to reconnect infrequently (e.g., approximately
	 every 3600 seconds).

 State Mismatch
 In the states indicated by "-" in
	 in , user action is required to
	 reset the association state or to recover it, for example, from backup storage. In
	 those cases, the server sends the error code 2002 to the peer. If possible, both the
	 EAP server and peer SHOULD indicate this error condition to the user
	 or server administrator.

 Negotiation Failure
 If there is no matching protocol version, the peer sends the error code 3001 to
	 the server. If there is no matching cryptosuite, the peer sends the error code 3002
	 to the server. If there is no matching OOB direction, the peer sends the error code
	 3003 to the server.
 In practice, there is no way of recovering from these errors without software or
	 hardware changes. If possible, both the EAP server and peer SHOULD
	 indicate these error conditions to the user.

 Cryptographic Verification Failure
 If the receiver of the OOB message detects an unrecognized PeerId or incorrect
	 fingerprint (Hoob) in the OOB message, the receiver MUST remain in
	 the Waiting for OOB (1) state as if no OOB message was received. The receiver
	 SHOULD indicate the failure to accept the OOB message to the user. No
	 in-band error message is sent.
 Note that if the OOB message was delivered from the server to the peer and the
	 peer does not recognize the PeerId, the likely cause is that the user has
	 unintentionally delivered the OOB message to the wrong peer device. If possible, the
	 peer SHOULD indicate this to the user; however, the peer device may
	 not have the capability for many different error indications to the user, and it
	 MAY use the same indication as in the case of an incorrect
	 fingerprint.
 The rationale for the above is that the invalid OOB message could have been
	 presented to the receiver by mistake or intentionally by a malicious party;
	 thus, it should be ignored in the hope that the honest user will soon deliver a
	 correct OOB message.
 If the EAP server or peer detects an incorrect message authentication code (MACs,
	 MACp, MACs2, or MACp2), it sends the error code 4001 to the other side. As
	 specified in
	 the beginning of , the failed Completion
	 Exchange will not result in server or peer state changes, while an error in the
	 Reconnect Exchange will put both sides to the Reconnecting (3) state and thus lead
	 to another reconnect attempt.
 The rationale for this is that the invalid cryptographic message may have been
	 spoofed by a malicious party; thus, it should be ignored. In particular, a
	 spoofed message on the in-band channel should not force the honest user to perform
	 the OOB Step again. In practice, however, the error may be caused by other failures,
	 such as a software bug. For this reason, the EAP server MAY limit the
	 rate of peer connections with SleepTime after the above error. Also, there
	 SHOULD be a way for the user to reset the peer to the Unregistered
	 (0) state so that the OOB Step can be repeated as the last resort.

 Application-Specific Failure
 Applications MAY define new error messages for failures that are
	 specific to the application or to one type of OOB channel. They MAY
	 also use the generic application-specific error code 5001 or the error codes 5002
	 and 5004, which have been reserved for indicating invalid data in the ServerInfo and
	 PeerInfo fields, respectively. Additionally, anticipating OOB channels that make use
	 of a URL, the error code 5003 has been reserved for indicating an invalid server
	 URL.

 ServerInfo and PeerInfo Contents
 The ServerInfo and PeerInfo fields in the Initial Exchange and Reconnect Exchange
 enable the server and peer, respectively, to send information about themselves to the
 other endpoint. They contain JSON objects whose structure may be specified separately
 for each application and each type of OOB channel. ServerInfo and PeerInfo
 MAY contain auxiliary data needed for the OOB channel messaging and for
 EAP channel binding (see). This
 section describes the optional initial data fields for ServerInfo and PeerInfo
 registered by this specification. Further specifications may request new
 application-specific ServerInfo and PeerInfo data fields from IANA (see Sections and).

 ServerInfo Data Fields

 Data Field
 Description

 Type
 Type-tag string that can be used by the peer as a hint for how to
	 interpret the ServerInfo contents.

 ServerName
 String that may be used to aid human identification of the
	 server.

 ServerURL
 Prefix string when the OOB message is formatted as a URL, as
	 suggested in .

 SSIDList
 List of IEEE 802.11 wireless network service set identifier
	 (SSID) strings
	 used for roaming support, as suggested in . JSON array of ASCII-encoded SSID strings.

 Base64SSIDList
 List of IEEE 802.11 wireless network identifier (SSID) strings
	 used for roaming support, as suggested in . JSON array of SSIDs, each of which is base64url-encoded
	 without padding. Peers SHOULD send at most one of the fields
	 SSIDList and Base64SSIDList in PeerInfo, and the server SHOULD
	 ignore SSIDList if Base64SSIDList is included.

 PeerInfo Data Fields

 Data Field
 Description

 Type
 Type-tag string that can be used by the server as a hint for how
	 to interpret the PeerInfo contents.

 PeerName
 String that may be used to aid human identification of the
	 peer.

 Manufacturer
 Manufacturer or brand string.

 Model
 Manufacturer-specified model string.

 SerialNumber
 Manufacturer-assigned serial number.

 MACAddress
 Peer link-layer 48-bit extended unique identifier (EUI-48) in
	 the 12-digit base-16 form
	 . The string MAY be in
	 upper or lower case and MAY include additional colon ':' or dash
	 '-' characters that MUST be ignored by the server.

 SSID
 IEEE 802.11 network SSID for channel binding. The SSID is an
	 ASCII string.

 Base64SSID
 IEEE 802.11 network SSID for channel binding. The SSID is
	 base64url encoded. Peer SHOULD send at most one of the fields SSID
	 and Base64SSID in PeerInfo, and the server SHOULD ignore SSID if
	 Base64SSID is included.

 BSSID
 Wireless network basic service set identifier (BSSID) (EUI-48)
	 in the 12-digit base-16 form
	 for channel binding. The string
	 MAY be in upper or lower case and MAY include
	 additional colon ':' or dash '-' characters that MUST be ignored by
	 the server.

 IANA Considerations
 This section provides information
 regarding registration of values related to the EAP-NOOB method, in accordance with
 .
 The EAP Method Type for EAP-NOOB (value 56) has been assigned in the "Method Types"
 subregistry of the "Extensible Authentication Protocol (EAP) Registry".
 Per this memo, IANA has created and will maintain a new registry entitled "Nimble
 Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" in the Extensible Authentication Protocol
 (EAP) category. Also, IANA has created and will maintain the subregistries defined in
 the following subsections.

 Cryptosuites
 IANA has created and will maintain a new subregistry entitled "EAP-NOOB
	Cryptosuites" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry.
	Cryptosuites are identified by an integer. Each cryptosuite MUST
	specify an ECDHE curve for the key exchange, encoding of the ECDHE public key as a JWK
	object, and a cryptographic hash function for the fingerprint and HMAC computation and
	key derivation. The hash value output by the cryptographic hash function
	 MUST be at least 32 bytes in length. The initial values for this
	registry are:

 EAP-NOOB Cryptosuites

 Cryptosuite
 Algorithms

 0
 Reserved

 1
 ECDHE curve Curve25519 , public-key format ,
	 hash function SHA-256 . The JWK
	 encoding of Curve25519 public key is defined in . For clarity, the "crv" parameter is "X25519", the "kty"
	 parameter is "OKP", and the public-key encoding contains only an
	 x-coordinate.

 2
 ECDHE curve NIST P-256 , public-key format ,
	 hash function SHA-256 . The JWK
	 encoding of NIST P-256 public key is defined in . For clarity, the "crv" parameter is "P-256", the "kty"
	 parameter is "EC", and the public-key encoding has both an x and y coordinate,
	 as defined in .

 EAP-NOOB implementations MUST support Cryptosuite 1. Support for
	Cryptosuite 2 is RECOMMENDED. An example of a Cryptosuite 1 public-key
	encoded as a JWK object is given below. (Line breaks are for readability only.)

"jwk":{"kty":"OKP","crv":"X25519","x":"3p7bfXt9wbTTW2HC7OQ1Nz-
DQ8hbeGdNrfx-FG-IK08"}

 Assignment of new values for new cryptosuites MUST be done through
 IANA with "Specification Required", as defined in .

 Message Types
 IANA has created and will maintain a new subregistry entitled "EAP-NOOB
	Message Types" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry.
	EAP-NOOB request and response pairs are identified by an integer Message Type. The
	initial values for this registry are:

 EAP-NOOB Message Types

 Message Type
 Used in Exchange
 Purpose

 0
 Error
 Error notification

 1
 All exchanges
 PeerId and PeerState discovery

 2
 Initial
 Version, cryptosuite, and parameter negotiation

 3
 Initial
 Exchange of ECDHE keys and nonces

 4
 Waiting
 Indication to the peer that the server has not yet received an
	 OOB message

 5
 Completion
 NoobId discovery

 6
 Completion
 Authentication and key confirmation with HMAC

 7
 Reconnect
 Version, cryptosuite, and parameter negotiation

 8
 Reconnect
 Exchange of ECDHE keys and nonces

 9
 Reconnect
 Authentication and key confirmation with HMAC

 Assignment of new values for new Message Types MUST be done through
	IANA with "Specification Required", as defined in .

 Error Codes
 IANA has created and will maintain a new subregistry entitled "EAP-NOOB
	Error codes" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)" registry.
	Cryptosuites are identified by an integer. The initial values for this registry
	are:

 EAP-NOOB Error Codes

 Error code
 Purpose

 1001
 Invalid NAI

 1002
 Invalid message structure

 1003
 Invalid data

 1004
 Unexpected message type

 1005
 Invalid ECDHE key

 2001
 Unwanted peer

 2002
 State mismatch, user action required

 2003
 Unrecognized OOB message identifier

 2004
 Unexpected peer identifier

 3001
 No mutually supported protocol version

 3002
 No mutually supported cryptosuite

 3003
 No mutually supported OOB direction

 4001
 HMAC verification failure

 5001
 Application-specific error

 5002
 Invalid server info

 5003
 Invalid server URL

 5004
 Invalid peer info

 6001-6999
 Reserved for Private and Experimental Use

 Assignment of new error codes MUST be done through IANA with
	"Specification Required", as defined in ,
	except for the range 6001-6999. This range is reserved for "Private Use" and
	"Experimental Use", both locally and on the open Internet.

 ServerInfo Data Fields
 IANA has created and will maintain a new subregistry entitled "EAP-NOOB
	ServerInfo Data Fields" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)"
	registry. The initial values for this registry are:

 ServerInfo Data Fields

 Data Field
 Specification

 Type
 RFC 9140,

 ServerName
 RFC 9140,

 ServerURL
 RFC 9140,

 SSIDList
 RFC 9140,

 Base64SSIDList
 RFC 9140,

 Assignment of new values for new ServerInfo data fields MUST be done
	through IANA with "Specification Required", as defined in .

 PeerInfo Data Fields
 IANA is requested to create and maintain a new subregistry entitled "EAP-NOOB
	PeerInfo Data Fields" in the "Nimble Out-of-Band Authentication for EAP Parameters (EAP-NOOB)"
	registry. The initial values for this registry are:

 PeerInfo Data Fields

 Data Field
 Specification

 Type
 RFC 9140,

 PeerName
 RFC 9140,

 Manufacturer
 RFC 9140,

 Model
 RFC 9140,

 SerialNumber
 RFC 9140,

 MACAddress
 RFC 9140,

 SSID
 RFC 9140,

 Base64SSID
 RFC 9140,

 BSSID
 RFC 9140,

 Assignment of new values for new PeerInfo data fields MUST be done
	through IANA with "Specification Required", as defined in .

 Domain Name Reservation
 The special-use domain "eap-noob.arpa" has been registered in the .arpa registry
	() and the "Special-Use Domain
	Names" registry ().

 Guidance for Designated Experts
 Experts SHOULD be conservative in the allocation of new
	Cryptosuites. Experts MUST ascertain that the requested values match
	the current Crypto Forum Research Group (CFRG) guidance on cryptographic algorithm
	security. Experts MUST ensure that any new Cryptosuites fully specify
	the encoding of the ECDHE public key and should include details, such as the value of
	the "kty" (key type) parameter when JWK encoding
	is used.
 Experts SHOULD be conservative in the allocation of new Message
	Types. Experts SHOULD ascertain that a well-defined specification for
	the new Message Type is permanently and publicly available.
 Experts SHOULD be conservative in the allocation of new Error codes,
	since the 6001-6999 range is already reserved for private and experimental use.
 Experts MAY be liberal in the allocation of new ServerInfo and
	PeerInfo data fields. Experts MUST ensure that the data field requested
	has a unique name that is not easily confused with existing registrations. For
	example, requests for a new PeerInfo data field "ssid" should be rejected even though
	it is unique because it can be confused with the existing registration of "SSID".
	Experts MUST ensure that a suitable Description for the data field is
	available.

 Security Considerations
 EAP-NOOB is an authentication and key derivation protocol; thus, security
 considerations can be found in most sections of this specification. In the following, we
 explain the protocol design and highlight some other special considerations.

 Authentication Principle
 EAP-NOOB establishes a shared secret with an authenticated ECDHE key exchange. The
	mutual authentication in EAP-NOOB is based on two separate features, both conveyed in
	the OOB message. The first authentication feature is the secret nonce Noob. The peer
	and server use this secret in the Completion Exchange to mutually authenticate the
	session key previously created with ECDHE. The message authentication codes computed
	with the secret nonce Noob are alone sufficient for authenticating the key exchange.
	The second authentication feature is the integrity-protecting fingerprint Hoob. Its
	purpose is to prevent impersonation attacks even in situations where the attacker is
	able to eavesdrop on the OOB channel and the nonce Noob is compromised. In some
	human-assisted OOB channels, such as human-perceptible audio or a user-typed URL, it
	may be easier to detect tampering than disclosure of the OOB message, and such
	applications benefit from the second authentication feature.
 The additional security provided by the cryptographic fingerprint Hoob is somewhat
	intricate to understand. The endpoint that receives the OOB message uses Hoob to
	verify the integrity of the ECDHE exchange. Thus, the OOB receiver can detect
	impersonation attacks that may have happened on the in-band channel. The other
	endpoint, however, is not equally protected because the OOB message and fingerprint
	are sent only in one direction. Some protection to the OOB sender is afforded by the
	fact that the user may notice the failure of the association at the OOB receiver and
	therefore reset the OOB sender. Other device-pairing protocols have solved similar
	situations by requiring the user to confirm to the OOB sender that the association was
	accepted by the OOB receiver, e.g., with a button press on the sender side.
	Applications MAY implement EAP-NOOB in this way. Nevertheless, since
	EAP-NOOB was designed to work with strictly one-directional OOB communication and the
	fingerprint is only the second authentication feature, the EAP-NOOB specification does
	not mandate such explicit confirmation to the OOB sender.
 To summarize, EAP-NOOB uses the combined protection of the secret nonce Noob and
	the cryptographic fingerprint Hoob, both conveyed in the OOB message. The secret nonce
	Noob alone is sufficient for mutual authentication unless the attacker can eavesdrop
	on it from the OOB channel. Even if an attacker is able to eavesdrop on the secret
	nonce Noob, it nevertheless cannot perform a full impersonation attack on the in-band
	channel because a mismatching fingerprint would alert the OOB receiver, which would
	reject the OOB message. The attacker that eavesdropped on the secret nonce can
	impersonate the OOB receiver to the OOB sender. If it does, the association will
	appear to be complete only on the OOB sender side, and such situations have to be
	resolved by the user by resetting the OOB sender to the initial state.
 The expected use cases for EAP-NOOB are ones where it replaces a user-entered
	access credential in IoT appliances. In wireless network access without EAP, the
	user-entered credential is often a passphrase that is shared by all the network
	stations. The advantage of an EAP-based solution, including EAP-NOOB, is that it
	establishes a different shared secret for each peer device, which makes the system
	more resilient against device compromise. Another advantage is that it is possible to
	revoke the security association for an individual device on the server side.
 Forward secrecy during fast reconnect in EAP-NOOB is optional. The Reconnect
	Exchange in EAP-NOOB provides forward secrecy only if both the server and peer send
	their fresh ECDHE keys. This allows both the server and peer to limit the
	frequency of the costly computation that is required for forward secrecy. The server
	 MAY adjust the frequency of its attempts at ECDHE rekeying based on
	what it knows about the peer's computational capabilities.
 Another way in which some servers may control their computational load is to reuse
	the same ECDHE key for all peers over a short server-specific time window. In that
	case, forward secrecy will be achieved only after the server updates its ECDHE key,
	which may be a reasonable trade-off between security and performance. However, the
	server MUST NOT reuse the same ECDHE key with the same peer when
	rekeying with ECDHE (KeyingMode=2 or KeyingMode=3). Instead, it can simply not send an
	ECDHE key (KeyingMode=1).
 The users delivering the OOB messages will often authenticate themselves to the EAP
	server, e.g., by logging into a secure web page or API. In this case, the server can
	associate the peer device with the user account. Applications that make use of
	EAP-NOOB can use this information for configuring the initial owner of the
	freshly registered device.

 Identifying Correct Endpoints
 Potential weaknesses in EAP-NOOB arise from the fact that the user must physically
	identify the correct peer device. If the user mistakenly delivers the OOB message
	from the wrong peer device to the server, the server may create an association with
	the wrong peer. The reliance on the user in identifying the correct endpoints is an
	inherent property of user-assisted, out-of-band authentication. To understand the
	potential consequences of the user mistake, we need to consider a few different
	scenarios. In the first scenario, there is no malicious party, and the user makes an
	accidental mistake between two out-of-the-box devices that are both ready to be
	registered to a server. If the user delivers the OOB message from the wrong device to
	the server, confusion may arise but usually no security issues. In the second
	scenario, an attacker intentionally tricks the user, for example, by substituting the
	original peer device with a compromised one. This is essentially a supply chain attack
	where the user accepts a compromised physical device.
 There is also a third scenario, in which an opportunistic attacker tries to take
	advantage of the user's accidental mistake. For example, the user could play an audio
	or a blinking LED message to a device that is not expecting to receive it. In simple
	security bootstrapping solutions that transfer a primary key to the device via the OOB
	channel, the device could misuse or leak the accidentally received primary key.
	EAP-NOOB is not vulnerable to such opportunistic attackers because the OOB message has
	no value to anyone who did not take part in the corresponding Initial Exchange.
 One mechanism that can mitigate user mistakes is certification of peer devices. A
	certificate or an attestation token (e.g., and) can convey
	to the server authentic identifiers and attributes, such as model and serial number,
	of the peer device. Compared to a fully certificate-based authentication, however,
	EAP-NOOB can be used without trusted third parties and does not require the user to
	know any identifier of the peer device; physical access to the device is sufficient
	for bootstrapping with EAP-NOOB.
 Similarly, the attacker can try to trick the user into delivering the OOB message
	to
	the wrong server so that the peer device becomes associated with the wrong server. If
	the EAP server is accessed through a web user interface, the attack is akin to
	phishing attacks where the user is tricked into accessing the wrong URL and wrong web
	page. OOB implementation with a dedicated app on a mobile device, which communicates
	with a server API at a preconfigured URL, can protect against such attacks.
 After the device registration, an attacker could clone the device identity by
	copying the keys from the persistent EAP-NOOB association into another device. The
	attacker can be an outsider who gains access to the keys or the device owner who wants
	to have two devices matching the same registration. The cloning threats can be
	mitigated by creating the cryptographic keys and storing the persistent EAP-NOOB
	association on the peer device in a secure hardware component such as a trusted
	execution environment (TEE). Furthermore, remote attestation on the application level
	could provide assurance to the server that the device has not been cloned. Reconnect
	Exchange with a new cryptosuite (KeyingMode=3) will also disconnect all but the first
	clone that performs the update.

 Trusted Path Issues and Misbinding Attacks
 Another potential threat is spoofed user input or output on the peer device. When
	the user is delivering the OOB message to or from the correct peer device, a trusted
	path between the user and the peer device is needed. That is, the user must
	communicate directly with an authentic operating system and EAP-NOOB implementation in
	the peer device and not with a spoofed user interface. Otherwise, a registered device
	that is under the control of the attacker could emulate the behavior of an
	unregistered device. The secure path can be implemented, for example, by having the
	user press a reset button to return the device to the Unregistered (0) state and to
	invoke
	a trusted UI. The problem with such trusted paths is that they are not standardized
	across devices.
 Another potential consequence of a spoofed UI is the misbinding attack where the
	user tries to register a correct but compromised device, which tricks the user into
	registering another (uncompromised) device instead. For example, the compromised
	device might have a malicious, full-screen app running, which presents to the user QR
	codes copied, in real time, from another device's screen. If the unwitting user scans
	the QR code and delivers the OOB message in it to the server, the wrong device may
	become registered in the server. Such misbinding vulnerabilities arise because the
	user does not have any secure way of verifying that the in-band cryptographic
	handshake and the out-of-band physical access are terminated at the same physical
	device. Sethi et al. analyze the misbinding
	threat against device-pairing protocols and also EAP-NOOB. Essentially, all protocols
	where the authentication relies on the user's physical access to the device are
	vulnerable to misbinding, including EAP-NOOB.
 A standardized trusted path for communicating directly with the trusted computing
	base in a physical device would mitigate the misbinding threat, but such paths rarely
	exist in practice. Careful asset tracking on the server side can also prevent most
	misbinding attacks if the peer device sends its identifiers or attributes in the
	PeerInfo field and the server compares them with the expected values. The wrong but
	uncompromised device's PeerInfo will not match the expected values. Device
	certification by the manufacturer can further strengthen the asset tracking.

 Peer Identifiers and Attributes
 The PeerId value in the protocol is a server-allocated identifier for its
	association with the peer and SHOULD NOT be shown to the user because
	its value is initially ephemeral. Since the PeerId is allocated by the server and the
	scope of the identifier is the single server, the so-called identifier squatting
	attacks, where a malicious peer could reserve another peer's identifier, are not
	possible in EAP-NOOB. The server SHOULD assign a random or
	pseudorandom PeerId to each new peer. It SHOULD NOT select the PeerId
	based on any peer characteristics that it may know, such as the peer's link-layer
	network address.
 User reset or failure in the OOB Step can cause the peer to perform many Initial
	Exchanges with the server, which allocates many PeerId values and stores the ephemeral
	protocol state for them. The peer will typically only remember the latest ones.
	EAP-NOOB leaves it to the implementation to decide when to delete these ephemeral
	associations. There is no security reason to delete them early, and the server does
	not have any way to verify that the peers are actually the same one. Thus, it is
	safest to store the ephemeral states on the server for at least one day. If the OOB
	messages are sent only in the server-to-peer direction, the server SHOULD NOT delete the ephemeral state before all the related Noob values have
	expired.
 After completion of EAP-NOOB, the server may store the PeerInfo data, and the user
	may use it to identify the peer and its attributes, such as the make and model or
	serial number. A compromised peer could lie in the PeerInfo that it sends to the
	server. If the server stores any information about the peer, it is important that this
	information is approved by the user during or after the OOB Step. Without verification
	by the user or authentication on the application level, the PeerInfo is not
	authenticated information and should not be relied on. One possible use for the
	PeerInfo field is EAP channel binding (see).

 Downgrading Threats
 The fingerprint Hoob protects all the information exchanged in the Initial
	Exchange, including the cryptosuite negotiation. The message authentication codes MACs
	and MACp also protect the same information. The message authentication codes MACs2 and
	MACp2 protect information exchanged during key renegotiation in the Reconnect
	Exchange. This prevents downgrading attacks to weaker cryptosuites, as long as the
	possible attacks take more time than the maximum time allowed for the EAP-NOOB
	completion. This is typically the case for recently discovered cryptanalytic
	attacks.
 As an additional precaution, the EAP server and peer MUST check for
	downgrading attacks in the Reconnect Exchange as follows. As long as the server or
	peer saves any information about the other endpoint, it MUST also
	remember the previously negotiated cryptosuite and MUST NOT accept
	renegotiation of any cryptosuite that is known to be weaker than the previous one,
	such as a deprecated cryptosuite. Determining the relative strength of the
	cryptosuites is out of scope of this specification and may be managed by
	implementations or by local policies at the peer and server.
 Integrity of the direction negotiation cannot be verified in the same way as the
	integrity of the cryptosuite negotiation. That is, if the OOB channel used in an
	application is critically insecure in one direction, an on-path attacker could modify
	the negotiation messages and thereby cause that direction to be used. Applications
	that support OOB messages in both directions SHOULD, therefore, ensure
	that the OOB channel has sufficiently strong security in both directions. While this
	is a theoretical vulnerability, it could arise in practice if EAP-NOOB is deployed in
	new applications. Currently, we expect most peer devices to support only one OOB
	direction; in which case, interfering with the direction negotiation can only prevent
	the completion of the protocol.
 The long-term shared key material Kz in the persistent EAP-NOOB association is
	established with an ECDHE key exchange when the peer and server are first associated.
	It is a weaker secret than a manually configured random shared key because advances in
	cryptanalysis against the used ECDHE curve could eventually enable the attacker to
	recover Kz. EAP-NOOB protects against such attacks by allowing cryptosuite upgrades in
	the Reconnect Exchange and by updating the shared key material Kz whenever the
	cryptosuite is upgraded. We do not expect the cryptosuite upgrades to be frequent,
	but,
	if an upgrade becomes necessary, it can be done without manual reset and reassociation
	of the peer devices.

 Protected Success and Failure Indications
 allows EAP methods to
	specify protected result indications because EAP-Success and EAP-Failure packets are
	neither acknowledged nor integrity protected. notes that these indications may be explicit or implicit.
 EAP-NOOB relies on implicit, protected success indicators in the Completion
	Exchange and
	Reconnect Exchange. Successful verification of MACs and MACs2 in the EAP-Request
	message from the server (message type 6 and message type 9, respectively) acts as an
	implicit, protected success indication to the peer. Similarly, successful verification
	of MACp and MACp2 in the EAP-Response message from the peer (message type 6 and
	message type 9, respectively) act as an implicit, protected success indication to the
	server.
 EAP-NOOB failure messages are not protected. Protected failure result indications
	would not significantly improve availability since EAP-NOOB reacts to most malformed
	data by ending the current EAP conversation in EAP-Failure. However, since EAP-NOOB
	spans multiple conversations, failure in one conversation usually means no state
	change on the level of the EAP-NOOB state machine.

 Channel Binding
 EAP channel binding, defined in , means
	that the endpoints compare their perceptions of network properties, such as
	lower-layer identifiers, over the secure channel established by EAP authentication.
	 defines two approaches to
	channel binding. EAP-NOOB follows the first approach, in which the peer and server
	exchange plaintext information about the network over a channel that is integrity
	protected with keys derived during the EAP execution. More specifically, channel
	information is exchanged in the plaintext PeerInfo and ServerInfo objects and is later
	verified with message authentication codes (MACp, MACs, MACp2, and MACs2). This allows
	policy-based comparison with locally perceived network properties on either side, as
	well as logging for debugging purposes. The peer MAY include in
	PeerInfo any data items that it wants to bind to the EAP-NOOB association and to the
	exported keys. These can be properties of the authenticator or the access link, such
	as the SSID and BSSID of the wireless network (see). As noted in , the scope of the channel binding
	varies between deployments. For example, the server may have less link-layer
	information available from roaming networks than from a local enterprise network, and
	it may be unable to verify all the network properties received in PeerInfo. There are
	also privacy considerations related to exchanging the ServerInfo and PeerInfo while
	roaming (see).
 Channel binding to secure channels, defined in , binds authentication at a higher protocol layer to a secure
	channel at a lower layer. Like most EAP methods, EAP-NOOB exports the session keys
	MSK and EMSK, and an outer tunnel or a higher-layer protocol can bind its
	authentication to these keys. Additionally, EAP-NOOB exports the key AMSK, which may
	be used to bind application-layer authentication to the secure channel created by
	EAP-NOOB and to the session keys MSK and EMSK.

 Denial of Service
 While denial-of-service (DoS) attacks by on-link attackers cannot be fully
	prevented, the design goal in EAP-NOOB is to void long-lasting failure caused by an
	attacker who is present only temporarily or intermittently. The main defense mechanism
	is the persistent EAP-NOOB association, which is never deleted automatically due to
	in-band messages or error indications. Thus, the endpoints can always use the
	persistent association for reconnecting after the DoS attacker leaves the network. In
	this sense, the persistent association serves the same function in EAP-NOOB as a
	permanent primary key or certificate in other authentication protocols. We discuss
	logical attacks against the updates of the persistent association in .
 In addition to logical DoS attacks, it is necessary to consider resource exhaustion
	attacks against the EAP server. The number of persistent EAP-NOOB associations created
	in the server is limited by the need for a user to assist in delivering the OOB
	message. The users can be authenticated for the input or output of the OOB message at
	the EAP server, and any users who create excessive numbers of persistent associations
	can be held accountable and their associations can be deleted by the server
	administrator. What the attacker can do without user authentication is to perform the
	Initial Exchange repeatedly and create a large number of ephemeral associations
	(server in Waiting for OOB (1) state) without ever delivering the OOB message. In
	 , it was suggested that the server
	should store the ephemeral states for at least a day. This may require off-loading the
	state storage from memory to disk during a DoS attack. However, if the server
	implementation is unable to keep up with a rate of Initial Exchanges performed by a
	DoS attacker and needs to drop some ephemeral states, no damage is caused to
	already-created persistent associations, and the honest users can resume registering
	new peers when the DoS attacker leaves the network.
 There are some trade-offs in the protocol design between politely backing off and
	giving
	way to DoS attackers. An on-link DoS attacker could spoof the SleepTime value in the
	Initial Exchange or Waiting Exchange to cause denial of service against a specific
	peer device. There is an upper limit on the SleepTime (3600 seconds) to
	mitigate the
	spoofing threat. This means that, in the presence of an on-link DoS attacker who
	spoofs the SleepTime, it could take up to one hour after the delivery of the OOB
	message before the device performs the Completion Exchange and becomes functional.
	Similarly, the Unwanted peer error (error code 2001) could cause the peer to stop
	connecting to the network. If the peer device is able to alert the user about the
	error condition, it can safely stop connecting to the server and wait for the user to
	trigger a reconnection attempt, e.g., by resetting the device. As mentioned in , peer devices that are unable to alert the
	user should continue to retry the Initial Exchange infrequently to avoid a permanent
	DoS condition. We believe a maximum backoff time of 3600 seconds is reasonable for a
	new protocol because malfunctioning or misconfigured peer implementations are at least
	as great a concern as DoS attacks, and politely backing off within some reasonable
	limits will increase the acceptance of the protocol. The maximum backoff times could
	be updated to be shorter as the protocol implementations mature.

 Recovery from Loss of Last Message
 The EAP-NOOB Completion Exchange, as well as the Reconnect Exchange with
	cryptosuite update, results in a persistent state change that should take place either
	on both endpoints or on neither; otherwise, the result is a state mismatch that
	requires user action to resolve. The state mismatch can occur if the final EAP
	response of the exchanges is lost. In the Completion Exchange, the loss of the final
	response (Type=6) results in the peer moving to the Registered (4) state and creating
	a persistent EAP-NOOB association while the server stays in an ephemeral state (1 or
	2). In the Reconnect Exchange, the loss of the final response (Type=9) results in the
	peer moving to the Registered (4) state and updating its persistent key material Kz
	while the server stays in the Reconnecting (3) state and keeps the old key
	material.
 The state mismatch is an example of an unavoidable problem in distributed systems:
	it is theoretically impossible to guarantee synchronous state changes in endpoints
	that communicate asynchronously. The protocol will always have one critical message
	that may get lost, so that one side commits to the state change and the other side
	does not. In EAP, the critical message is the final response from the peer to the
	server. While the final response is normally followed by EAP-Success, states that the peer
	 MAY assume that the EAP-Success was lost and the authentication was
	successful. Furthermore, EAP method implementations in the peer do not receive
	notification of the EAP-Success message from the parent EAP state machine . For these reasons, EAP-NOOB on the peer side
	commits to a state change already when it sends the final response.
 The best available solution to the loss of the critical message is to keep trying.
	EAP retransmission behavior defined in suggests 3-5 retransmissions. In the absence of an attacker, this
	would be sufficient to reduce the probability of failure to an acceptable level.
	However, a determined attacker on the in-band channel can drop the final EAP-Response
	message and all subsequent retransmissions. In the Completion Exchange (KeyingMode=0)
	and Reconnect Exchange with cryptosuite upgrade (KeyingMode=3), this could
	result in a state mismatch and persistent denial of service until the user resets the
	peer state.
 EAP-NOOB implements its own recovery mechanism that allows unlimited retries of the
	Reconnect Exchange. When the DoS attacker eventually stops dropping packets on the
	in-band channel, the protocol will recover. The logic for this recovery mechanism is
	specified in .
 EAP-NOOB does not implement the same kind of retry mechanism in the Completion
	Exchange. The reason is that there is always a user involved in the initial
	association process, and the user can repeat the OOB Step to complete the association
	after the DoS attacker has left. On the other hand, Reconnect Exchange needs to work
	without user involvement.

 Privacy Considerations
 There are privacy considerations related to performing the Reconnect Exchange while
	roaming. The peer and server may send updated PeerInfo and ServerInfo fields in the
	Reconnect Exchange. This data is sent unencrypted between the peer and the EAP
	authenticator, such as a wireless access point. Thus, it can be observed by both
	outsiders and the access network. The PeerInfo field contains identifiers and other
	information about the peer device (see). While the information refers to the peer device and not directly
	to the user, it can leak information about the user to the access network and to
	outside observers. The ServerInfo, on the other hand, can leak information about the
	peer's affiliation with the home network. For this reason, the optional PeerInfo and
	ServerInfo in the Reconnect Exchange SHOULD be omitted unless some
	critical data has changed and it cannot be updated on the application layer.
 Peer devices that randomize their Layer 2 address to prevent tracking can do this
	whenever the user resets the EAP-NOOB association. During the lifetime of the
	association, the PeerId is a unique identifier that can be used to track the peer in
	the access network. Later versions of this specification may consider updating the
	PeerId at each Reconnect Exchange. In that case, it is necessary to consider how the
	authenticator and access-network administrators can recognize and add misbehaving peer
	devices to a deny list, as well as how to avoid loss of synchronization between the
	server and the peer if messages are lost during the identifier update.
 To enable stronger identity protection in later versions of EAP-NOOB, the optional
	server-assigned NAI (NewNAI) SHOULD have a constant username part. The
	 RECOMMENDED username is "noob". The server MAY, however,
	send a different username in NewNAI to avoid username collisions within its realm or
	to conform to a local policy on usernames.

 EAP Security Claims
 EAP security claims are defined in . The security claims for EAP-NOOB are listed in .

 EAP Security Claims

 Security Property
 EAP-NOOB Claim

 Authentication mechanism
 ECDHE key exchange with out-of-band authentication

 Protected cryptosuite negotiation
 yes

 Mutual authentication
 yes

 Integrity protection
 yes

 Replay protection
 yes

 Confidentiality
 no

 Key derivation
 yes

 Key strength
 The specified cryptosuites provide key strength of at least 128
	 bits.

 Dictionary attack protection
 yes

 Fast reconnect
 yes

 Cryptographic binding
 not applicable

 Session independence
 yes

 Fragmentation
 no

 Channel binding
 yes (The ServerInfo and PeerInfo can be used to convey
	 integrity-protected channel properties, such as network SSID or peer MAC
	 address.)

 References

 Normative References

 IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture

 IEEE

 Digital Signature Standard (DSS)

 National Institute of Standards and Technology (NIST)

 Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography

 National Institute of Standards and Technology

 National Institute of Standards and Technology

 National Institute of Standards and Technology

 National Institute of Standards and Technology

 National Security Agency

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Extensible Authentication Protocol (EAP)

 This document defines the Extensible Authentication Protocol (EAP), an authentication framework which supports multiple authentication methods. EAP typically runs directly over data link layers such as Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP provides its own support for duplicate elimination and retransmission, but is reliant on lower layer ordering guarantees. Fragmentation is not supported within EAP itself; however, individual EAP methods may support this. This document obsoletes RFC 2284. A summary of the changes between this document and RFC 2284 is available in Appendix A. [STANDARDS-TRACK]

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Extensible Authentication Protocol (EAP) Key Management Framework

 The Extensible Authentication Protocol (EAP), defined in RFC 3748, enables extensible network access authentication. This document specifies the EAP key hierarchy and provides a framework for the transport and usage of keying material and parameters generated by EAP authentication algorithms, known as "methods". It also provides a detailed system-level security analysis, describing the conditions under which the key management guidelines described in RFC 4962 can be satisfied. [STANDARDS-TRACK]

 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

 Federal Information Processing Standard, FIPS

 JSON Web Key (JWK)

 A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.

 JSON Web Algorithms (JWA)

 This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.

 The Network Access Identifier

 In order to provide inter-domain authentication services, it is necessary to have a standardized method that domains can use to identify each other's users. This document defines the syntax for the Network Access Identifier (NAI), the user identifier submitted by the client prior to accessing resources. This document is a revised version of RFC 4282. It addresses issues with international character sets and makes a number of other corrections to RFC 4282.

 Elliptic Curves for Security

 This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.

 CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and Encryption (JOSE)

 This document defines how to use the Diffie-Hellman algorithms "X25519" and "X448" as well as the signature algorithms "Ed25519" and "Ed448" from the IRTF CFRG elliptic curves work in JSON Object Signing and Encryption (JOSE).

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Informative References

 Bluetooth Core Specification Version 5.3

 Bluetooth Special Interest Group

 IEEE Standard for Local and Metropolitan Area Networks--Port-Based Network Access Control

 IEEE

 The Entity Attestation Token (EAT)

 Security Theory LLC

 Qualcomm Technologies Inc.

 Qualcomm Technologies Inc.

 An Entity Attestation Token (EAT) provides a signed (attested) set of
 claims that describe state and characteristics of an entity,
 typically a device like a phone or an IoT device. These claims are
 used by a Relying Party to determine how much it wishes to trust the
 entity.

 An EAT is either a CWT or JWT with some attestation-oriented claims.
 To a large degree, all this document does is extend CWT and JWT.

 Work in Progress

 AAA Authorization Framework

 This memo serves as the base requirements for Authorization of Internet Resources and Services (AIRS). It presents an architectural framework for understanding the authorization of Internet resources and services and derives requirements for authorization protocols. This memo provides information for the Internet community.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 State Machines for Extensible Authentication Protocol (EAP) Peer and Authenticator

 This document describes a set of state machines for Extensible Authentication Protocol (EAP) peer, EAP stand-alone authenticator (non-pass-through), EAP backend authenticator (for use on Authentication, Authorization, and Accounting (AAA) servers), and EAP full authenticator (for both local and pass-through). This set of state machines shows how EAP can be implemented to support deployment in either a peer/authenticator or peer/authenticator/AAA Server environment. The peer and stand-alone authenticator machines are illustrative of how the EAP protocol defined in RFC 3748 may be implemented. The backend and full/pass-through authenticators illustrate how EAP/AAA protocol support defined in RFC 3579 may be implemented. Where there are differences, RFC 3748 and RFC 3579 are authoritative.
 The state machines are based on the EAP "Switch" model. This model includes events and actions for the interaction between the EAP Switch and EAP methods. A brief description of the EAP "Switch" model is given in the Introduction section.
 The state machine and associated model are informative only. Implementations may achieve the same results using different methods. This memo provides information for the Internet community.

 On the Use of Channel Bindings to Secure Channels

 The concept of channel binding allows applications to establish that the two end-points of a secure channel at one network layer are the same as at a higher layer by binding authentication at the higher layer to the channel at the lower layer. This allows applications to delegate session protection to lower layers, which has various performance benefits.
 This document discusses and formalizes the concept of channel binding to secure channels. [STANDARDS-TRACK]

 The EAP-TLS Authentication Protocol

 The Extensible Authentication Protocol (EAP), defined in RFC 3748, provides support for multiple authentication methods. Transport Layer Security (TLS) provides for mutual authentication, integrity-protected ciphersuite negotiation, and key exchange between two endpoints. This document defines EAP-TLS, which includes support for certificate-based mutual authentication and key derivation.
 This document obsoletes RFC 2716. A summary of the changes between this document and RFC 2716 is available in Appendix A. [STANDARDS-TRACK]

 Channel-Binding Support for Extensible Authentication Protocol (EAP) Methods

 This document defines how to implement channel bindings for Extensible Authentication Protocol (EAP) methods to address the "lying Network Access Service (NAS)" problem as well as the "lying provider" problem. [STANDARDS-TRACK]

 Secure bootstrapping of cloud-managed ubiquitous displays

 Ericsson

 Aalto University

 Aalto University

 Aalto University

 Proceedings of ACM International Joint Conference on Pervasive and
	 Ubiquitous Computing (UbiComp 2014), pp. 739-750, Seattle, USA

 Misbinding Attacks on Secure Device Pairing and Bootstrapping

 Using CBOR Web Tokens (CWTs) in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Arm Limited

 Arm Limited

 The TLS protocol supports different credentials, including pre-shared
 keys, raw public keys, and X.509 certificates. For use with public
 key cryptography developers have to decide between raw public keys,
 which require out-of-band agreement and full-fletched X.509
 certificates. For devices where the reduction of code size is
 important it is desirable to minimize the use of X.509-related
 libraries. With the CBOR Web Token (CWT) a structure has been
 defined that allows CBOR-encoded claims to be protected with CBOR
 Object Signing and Encryption (COSE).

 This document registers a new value to the "TLS Certificate Types"
 sub-registry to allow TLS and DTLS to use CWTs. Conceptually, CWTs
 can be seen as a certificate format (when with public key
 cryptography) or a Kerberos ticket (when used with symmetric key
 cryptography).

 Work in Progress

 Exchanges and Events per State
 shows how the EAP server chooses the
 exchange type depending on the server and peer states. In the state combinations
 marked with hyphen "-", there is no possible exchange and user action is required to
 make progress. Note that peer state 4 is omitted from the table because the peer never
 connects to the server when the peer is in that state. The table also shows the
 handling of errors in each exchange. A notable detail is that the recipient of error
 code 2003 moves to state 1.

 How the Server Chooses the Exchange Type

 Peer States
 Exchange Chosen by the Server
 Next Peer and Server States

 Server State: Unregistered (0)

 0..2
 Initial Exchange
 both 1 (0 on error)

 3
 -
 no change, notify user

 Server State: Waiting for OOB (1)

 0
 Initial Exchange
 both 1 (0 on error)

 1
 Waiting Exchange
 both 1 (no change on error)

 2
 Completion Exchange
 both 4 (A)

 3
 -
 no change, notify user

 Server State: OOB Received (2)

 0
 Initial Exchange
 both 1 (0 on error)

 1
 Completion Exchange
 both 4 (B)

 2
 Completion Exchange
 both 4 (A)

 3
 -
 no change, notify user

 Server State: Reconnecting (3) or Registered
	 (4)

 0..2
 -
 no change, notify user

 3
 Reconnect Exchange
 both 4 (3 on error)

 (A)
 peer to 1 on error 2003; no other changes on error
 (B)
 server to 1 on error 2003; no other changes on error

 lists the local events that can
 take place in the server or peer. Both the server and peer output and accept OOB
 messages in association state 1, leading the receiver to state 2. Communication errors
 and timeouts in states 0..2 lead back to state 0, while similar errors in states 3..4
 lead to state 3. An application request for rekeying (e.g., to refresh session keys or
 to upgrade cryptosuite) also takes the association from state 3..4 to state 3. The user
 can always reset the association state to 0. Recovering association data, e.g., from a
 backup, leads to state 3.

 Local Events in the Server and Peer

 Server/Peer State
 Possible Local Events in the Server and Peer
 Next State

 1
 OOB Output
 1

 1
 OOB Input
 2 (1 on error)

 0..2
 Mobility/timeout/network failure
 0

 3..4
 Mobility/timeout/network failure
 3

 3..4
 Rekeying request
 3

 0..4
 User resets association
 0

 0..4
 Association state recovery
 3

 Application-Specific Parameters
 lists OOB channel parameters that
 need to be specified in each application that makes use of EAP-NOOB. The list is not
 exhaustive and is included for the convenience of implementers only.

 OOB Channel Characteristics

 Parameter
 Description

 OobDirs
 Allowed directions of the OOB channel.

 OobMessageEncoding
 How the OOB message data fields are encoded for the OOB
	 channel.

 SleepTimeDefault
 Default minimum time in seconds that the peer should sleep before
	 the next Waiting Exchange.

 OobRetries
 Number of received OOB messages with invalid Hoob, after which the
	 receiver moves to Unregistered (0) state. When the OOB channel has error detection
	 or correction, the RECOMMENDED value is 5.

 NoobTimeout
 How many seconds the sender of the OOB message remembers the sent
	 Noob value. The RECOMMENDED value is 3600 seconds.

 ServerInfoType
 The value of the Type field and the other required fields in
	 ServerInfo.

 PeerInfoType
 The value of the Type field and the other required fields in
	 PeerInfo.

 EAP-NOOB Roaming
 AAA architectures allow for roaming of
 network-connected appliances that are authenticated over EAP. While the peer is roaming
 in a visited network, authentication still takes place between the peer and an
 authentication server at its home network. EAP-NOOB supports such roaming by allowing
 the server to assign a NAI to the peer. After the NAI has been assigned, it enables the
 visited network to route the EAP session to the peer's home AAA server.
 A peer device that is new or has gone through a hard reset should be connected first
 to the home network and establish an EAP-NOOB association with its home AAA server
 before it is able to roam. After that, it can perform the Reconnect Exchange from the
 visited network.
 Alternatively, the device may provide some method for the user to configure the NAI
 of the home network. This is the user or application-configured NAI mentioned in . In that case, the EAP-NOOB association can be created
 while roaming. The configured NAI enables the EAP messages to be routed correctly to the
 home AAA server.
 While roaming, the device needs to identify the networks where the EAP-NOOB
 association can be used to gain network access. For 802.11 access networks, the server
 MAY send a list of SSID strings in the ServerInfo field, called either
 SSIDList or Base64SSIDList. The list is formatted as explained in . If present, the peer
 MAY use this list as a hint to determine the networks where the EAP-NOOB
 association can be used for access authorization, in addition to the access network
 where the Initial Exchange took place.

 OOB Message as a URL
 While EAP-NOOB does not mandate any particular OOB communication channel, typical OOB
 channels include graphical displays and emulated NFC tags. In the peer-to-server
 direction, it may be convenient to encode the OOB message as a URL, which is then
 encoded as a QR code for displays and printers or as an NFC Data Exchange Format (NDEF)
 record for dynamic NFC
 tags. A user can then simply scan the QR code or NFC tag and open the URL, which causes
 the OOB message to be delivered to the authentication server. The URL
 MUST specify https or another server-authenticated scheme so that there
 is a secure connection to the server and the on-path attacker cannot read or modify the
 OOB message.
 The ServerInfo in this case includes a field called ServerURL of the following format
 with a RECOMMENDED length of at most 60 characters:
 https://<host>[:<port>]/[<path>]
 To this, the peer appends the OOB message fields (PeerId, Noob, and Hoob) as a query
 string. PeerId is provided to the peer by the server and might be a 22-character ASCII
 string. The peer base64url encodes, without padding, the 16-byte values Noob and Hoob
 into 22-character ASCII strings. The query parameters MAY be in any
 order. The resulting URL is of the following format:
 https://<host>[:<port>]/[<path>]?P=<PeerId>&N=<Noob>&H=<Hoob>
 The following is an example of a well-formed URL encoding the OOB message (without
 line breaks):
 https://aaa.example.com/eapnoob?P=mcm5BSCDZ45cYPlAr1ghNw&N=rMinS0-F4EfCU8D9ljxX_A&H=QvnMp4UGxuQVFaXPW_14UW

 Acknowledgments
 , , and implemented parts of this protocol with wpa_supplicant and
 hostapd. and were involved in the
 implementation of this protocol on Contiki. Their inputs helped us in improving the
 specification.
 The authors would like to thank and for providing valuable feedback, as well as new use cases and
 requirements for the protocol. Thanks to , , , , , , , , , , , and for their comments and reviews.
 We would also like to express our sincere gratitude to for his thorough review of the document.

 Authors' Addresses

 Aalto University

 Aalto
 00076
 Finland

 tuomas.aura@aalto.fi

 Ericsson

 Jorvas
 02420
 Finland

 mohit@iki.fi

 Aalto University

 Aalto
 00076
 Finland

 aleksi.peltonen@aalto.fi

