
RFC 8990
GeneRic Autonomic Signaling Protocol (GRASP)

Abstract
This document specifies the GeneRic Autonomic Signaling Protocol (GRASP), which enables
autonomic nodes and Autonomic Service Agents to dynamically discover peers, to synchronize
state with each other, and to negotiate parameter settings with each other. GRASP depends on an
external security environment that is described elsewhere. The technical objectives and
parameters for specific application scenarios are to be described in separate documents.
Appendices briefly discuss requirements for the protocol and existing protocols with comparable
features.

Stream: Internet Engineering Task Force (IETF)
RFC: 8990
Category: Standards Track
Published: May 2021
ISSN: 2070-1721
Authors: C. Bormann

Universität Bremen TZI
B. Carpenter, Ed.
Univ. of Auckland

B. Liu, Ed.
Huawei Technologies Co., Ltd

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8990

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8990
https://www.rfc-editor.org/info/rfc8990
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

2. Protocol Overview

2.1. Terminology

2.2. High-Level Deployment Model

2.3. High-Level Design

2.4. Quick Operating Overview

2.5. GRASP Basic Properties and Mechanisms

2.5.1. Required External Security Mechanism

2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP

2.5.3. Transport Layer Usage

2.5.4. Discovery Mechanism and Procedures

2.5.5. Negotiation Procedures

2.5.6. Synchronization and Flooding Procedures

2.6. GRASP Constants

2.7. Session Identifier (Session ID)

2.8. GRASP Messages

2.8.1. Message Overview

2.8.2. GRASP Message Format

2.8.3. Message Size

2.8.4. Discovery Message

2.8.5. Discovery Response Message

2.8.6. Request Messages

2.8.7. Negotiation Message

2.8.8. Negotiation End Message

2.8.9. Confirm Waiting Message

2.8.10. Synchronization Message

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 2

2.8.11. Flood Synchronization Message

2.8.12. Invalid Message

2.8.13. No Operation Message

2.9. GRASP Options

2.9.1. Format of GRASP Options

2.9.2. Divert Option

2.9.3. Accept Option

2.9.4. Decline Option

2.9.5. Locator Options

2.10. Objective Options

2.10.1. Format of Objective Options

2.10.2. Objective Flags

2.10.3. General Considerations for Objective Options

2.10.4. Organizing of Objective Options

2.10.5. Experimental and Example Objective Options

3. Security Considerations

4. CDDL Specification of GRASP

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Example Message Formats

A.1. Discovery Example

A.2. Flood Example

A.3. Synchronization Example

A.4. Simple Negotiation Example

A.5. Complete Negotiation Example

Appendix B. Requirement Analysis of Discovery, Synchronization, and Negotiation

B.1. Requirements for Discovery

B.2. Requirements for Synchronization and Negotiation Capability

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 3

B.3. Specific Technical Requirements

Appendix C. Capability Analysis of Current Protocols

Acknowledgments

Authors' Addresses

1. Introduction
The success of the Internet has made IP-based networks bigger and more complicated. Large-
scale ISP and enterprise networks have become more and more problematic for human-based
management. Also, operational costs are growing quickly. Consequently, there are increased
requirements for autonomic behavior in the networks. General aspects of Autonomic Networks
are discussed in and .

One approach is to largely decentralize the logic of network management by migrating it into
network elements. A reference model for Autonomic Networking on this basis is given in

. The reader should consult this document to understand how various autonomic
components fit together. In order to achieve autonomy, devices that embody Autonomic Service
Agents (ASAs,) have specific signaling requirements. In particular, they need to
discover each other, to synchronize state with each other, and to negotiate parameters and
resources directly with each other. There is no limitation on the types of parameters and
resources concerned, which can include very basic information needed for addressing and
routing, as well as anything else that might be configured in a conventional non-autonomic
network. The atomic unit of discovery, synchronization, or negotiation is referred to as a
technical objective, i.e., a configurable parameter or set of parameters (defined more precisely in
Section 2.1).

Negotiation is an iterative process, requiring multiple message exchanges forming a closed loop
between the negotiating entities. In fact, these entities are ASAs, normally but not necessarily in
different network devices. State synchronization, when needed, can be regarded as a special case
of negotiation without iteration. Both negotiation and synchronization must logically follow
discovery. More details of the requirements are found in Appendix B. Section 2.3 describes a
behavior model for a protocol intended to support discovery, synchronization, and negotiation.
The design of GeneRic Autonomic Signaling Protocol (GRASP) in Section 2 is based on this
behavior model. The relevant capabilities of various existing protocols are reviewed in Appendix
C.

The proposed discovery mechanism is oriented towards synchronization and negotiation
objectives. It is based on a neighbor discovery process on the local link, but it also supports
diversion to peers on other links. There is no assumption of any particular form of network
topology. When a device starts up with no preconfiguration, it has no knowledge of the topology.
The protocol itself is capable of being used in a small and/or flat network structure such as a

[RFC7575] [RFC7576]

[RFC8993]

[RFC7575]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 4

small office or home network as well as in a large, professionally managed network. Therefore,
the discovery mechanism needs to be able to allow a device to bootstrap itself without making
any prior assumptions about network structure.

Because GRASP can be used as part of a decision process among distributed devices or between
networks, it must run in a secure and strongly authenticated environment.

In realistic deployments, not all devices will support GRASP. Therefore, some Autonomic Service
Agents will directly manage a group of non-autonomic nodes, and other non-autonomic nodes
will be managed traditionally. Such mixed scenarios are not discussed in this specification.

2. Protocol Overview

2.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document uses terminology defined in .

The following additional terms are used throughout this document:

Discovery:
A process by which an ASA discovers peers according to a specific discovery objective. The
discovery results may be different according to the different discovery objectives. The
discovered peers may later be used as negotiation counterparts or as sources of
synchronization data.

Negotiation:
A process by which two ASAs interact iteratively to agree on parameter settings that best
satisfy the objectives of both ASAs.

State Synchronization:
A process by which ASAs interact to receive the current state of parameter values stored in
other ASAs. This is a special case of negotiation in which information is sent, but the ASAs do
not request their peers to change parameter settings. All other definitions apply to both
negotiation and synchronization.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC7575]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 5

Discovery Objective:

Synchronization Objective:

Negotiation Objective:

Technical Objective (usually abbreviated as Objective):
A technical objective is a data structure whose main contents are a name and a value. The
value consists of a single configurable parameter or a set of parameters of some kind. The
exact format of an objective is defined in Section 2.10.1. An objective occurs in three contexts:
discovery, negotiation, and synchronization. Normally, a given objective will not occur in
negotiation and synchronization contexts simultaneously.

One ASA may support multiple independent objectives.

The parameter(s) in the value of a given objective apply to a specific service or function
or action. They may in principle be anything that can be set to a specific logical,
numerical, or string value, or a more complex data structure, by a network node. Each
node is expected to contain one or more ASAs which may each manage subsidiary non-
autonomic nodes.

an objective in the process of discovery. Its value may be
undefined.

an objective whose specific technical content needs to be
synchronized among two or more ASAs. Thus, each ASA will maintain its own copy of
the objective.

an objective whose specific technical content needs to be decided
in coordination with another ASA. Again, each ASA will maintain its own copy of the
objective.

A detailed discussion of objectives, including their format, is found in Section 2.10.

Discovery Initiator:
An ASA that starts discovery by sending a Discovery message referring to a specific discovery
objective.

Discovery Responder:
A peer that either contains an ASA supporting the discovery objective indicated by the
discovery initiator or caches the locator(s) of the ASA(s) supporting the objective. It sends a
Discovery Response, as described later.

Synchronization Initiator:
An ASA that starts synchronization by sending a request message referring to a specific
synchronization objective.

Synchronization Responder:
A peer ASA that responds with the value of a synchronization objective.

Negotiation Initiator:
An ASA that starts negotiation by sending a request message referring to a specific negotiation
objective.

Negotiation Counterpart:
A peer with which the negotiation initiator negotiates a specific negotiation objective.

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 6

GRASP Instance:
This refers to an instantiation of a GRASP protocol engine, likely including multiple threads or
processes as well as dynamic data structures such as a discovery cache, running in a given
security environment on a single device.

GRASP Core:
This refers to the code and shared data structures of a GRASP instance, which will
communicate with individual ASAs via a suitable Application Programming Interface (API).

Interface or GRASP Interface:
Unless otherwise stated, this refers to a network interface, which might be physical or virtual,
that a specific instance of GRASP is currently using. A device might have other interfaces that
are not used by GRASP and which are outside the scope of the Autonomic Network.

2.2. High-Level Deployment Model
A GRASP implementation will be part of the Autonomic Networking Infrastructure (ANI) in an
autonomic node, which must also provide an appropriate security environment. In accordance
with , this be the Autonomic Control Plane (ACP) . As a result, all
autonomic nodes in the ACP are able to trust each other. It is expected that GRASP will access the
ACP by using a typical socket programming interface, and the ACP will make available only
network interfaces within the Autonomic Network. If there is no ACP, the considerations
described in Section 2.5.1 apply.

There will also be one or more Autonomic Service Agents (ASAs). In the minimal case of a single-
purpose device, these components might be fully integrated with GRASP and the ACP. A more
common model is expected to be a multipurpose device capable of containing several ASAs, such
as a router or large switch. In this case it is expected that the ACP, GRASP and the ASAs will be
implemented as separate processes, which are able to support asynchronous and simultaneous
operations, for example by multithreading.

In some scenarios, a limited negotiation model might be deployed based on a limited trust
relationship such as that between two administrative domains. ASAs might then exchange
limited information and negotiate some particular configurations.

GRASP is explicitly designed to operate within a single addressing realm. Its discovery and
flooding mechanisms do not support autonomic operations that cross any form of address
translator or upper-layer proxy.

A suitable Application Programming Interface (API) will be needed between GRASP and the
ASAs. In some implementations, ASAs would run in user space with a GRASP library providing
the API, and this library would in turn communicate via system calls with core GRASP functions.
Details of the API are out of scope for the present document. For further details of possible
deployment models, see .

An instance of GRASP must be aware of the network interfaces it will use, and of the appropriate
global-scope and link-local addresses. In the presence of the ACP, such information will be
available from the adjacency table discussed in . In other cases, GRASP must determine

[RFC8993] SHOULD [RFC8994]

[RFC8993]

[RFC8993]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 7

such information for itself. Details depend on the device and operating system. In the rest of this
document, the terms 'interfaces' or 'GRASP interfaces' refers only to the set of network interfaces
that a specific instance of GRASP is currently using.

Because GRASP needs to work with very high reliability, especially during bootstrapping and
during fault conditions, it is essential that every implementation continues to operate in adverse
conditions. For example, discovery failures, or any kind of socket exception at any time, must not
cause irrecoverable failures in GRASP itself, and must return suitable error codes through the
API so that ASAs can also recover.

GRASP must not depend upon nonvolatile data storage. All runtime error conditions, and events
such as address renumbering, network interface failures, and CPU sleep/wake cycles, must be
handled in such a way that GRASP will still operate correctly and securely afterwards (Section
2.5.1).

An autonomic node will normally run a single instance of GRASP, which is used by multiple
ASAs. Possible exceptions are mentioned below.

2.3. High-Level Design
This section describes the behavior model and general design of GRASP, supporting discovery,
synchronization, and negotiation, to act as a platform for different technical objectives.

A generic platform:
The protocol design is generic and independent of the synchronization or negotiation
contents. The technical contents will vary according to the various technical objectives and
the different pairs of counterparts.

Multiple instances:
Normally, a single main instance of the GRASP protocol engine will exist in an autonomic
node, and each ASA will run as an independent asynchronous process. However, scenarios
where multiple instances of GRASP run in a single node, perhaps with different security
properties, are possible (Section 2.5.2). In this case, each instance listen independently
for GRASP link-local multicasts, and all instances be woken by each such multicast in
order for discovery and flooding to work correctly.

Security infrastructure:
As noted above, the protocol itself has no built-in security functionality and relies on a
separate secure infrastructure.

MUST
MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 8

Discovery, synchronization, and negotiation are designed together:
The discovery method and the synchronization and negotiation methods are designed in the
same way and can be combined when this is useful, allowing a rapid mode of operation
described in Section 2.5.4. These processes can also be performed independently when
appropriate.

Thus, for some objectives, especially those concerned with application-layer services,
another discovery mechanism such as DNS-based Service Discovery be
used. The choice is left to the designers of individual ASAs.

A uniform pattern for technical objectives:
The synchronization and negotiation objectives are defined according to a uniform pattern.
The values that they contain could be carried either in a simple binary format or in a complex
object format. The basic protocol design uses the Concise Binary Object Representation
(CBOR) , which is readily extensible for unknown, future requirements.

A flexible model for synchronization:
GRASP supports synchronization between two nodes, which could be used repeatedly to
perform synchronization among a small number of nodes. It also supports an unsolicited
flooding mode when large groups of nodes, possibly including all autonomic nodes, need data
for the same technical objective.

There may be some network parameters for which a more traditional flooding
mechanism such as the Distributed Node Consensus Protocol (DNCP) is
considered more appropriate. GRASP can coexist with DNCP.

A simple initiator/responder model for negotiation:
Multiparty negotiations are very complicated to model and cannot readily be guaranteed to
converge. GRASP uses a simple bilateral model and can support multiparty negotiations by
indirect steps.

Organizing of synchronization or negotiation content:
The technical content transmitted by GRASP will be organized according to the relevant
function or service. The objectives for different functions or services are kept separate
because they may be negotiated or synchronized with different counterparts or have different
response times. Thus a normal arrangement is a single ASA managing a small set of closely
related objectives, with a version of that ASA in each relevant autonomic node. Further
discussion of this aspect is out of scope for the current document.

Requests and responses in negotiation procedures:
The initiator can negotiate a specific negotiation objective with relevant counterpart ASAs. It
can request relevant information from a counterpart so that it can coordinate its local
configuration. It can request the counterpart to make a matching configuration. It can request
simulation or forecast results by sending some dry-run conditions.

Beyond the traditional yes/no answer, the responder can reply with a suggested alternative
value for the objective concerned. This would start a bidirectional negotiation ending in a
compromise between the two ASAs.

[RFC7558] MAY

[RFC8949]

[RFC7787]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 9

2.4. Quick Operating Overview
An instance of GRASP is expected to run as a separate core module, providing an API (such as

) to interface to various ASAs. These ASAs may operate without special privilege, unless
they need it for other reasons (such as configuring IP addresses or manipulating routing tables).

The GRASP mechanisms used by the ASA are built around GRASP objectives defined as data
structures containing administrative information such as the objective's unique name and its
current value. The format and size of the value is not restricted by the protocol, except that it
must be possible to serialize it for transmission in CBOR, which is no restriction at all in practice.

GRASP provides the following mechanisms:

A discovery mechanism (M_DISCOVERY, M_RESPONSE) by which an ASA can discover other
ASAs supporting a given objective.
A negotiation request mechanism (M_REQ_NEG) by which an ASA can start negotiation of an
objective with a counterpart ASA. Once a negotiation has started, the process is symmetrical,
and there is a negotiation step message (M_NEGOTIATE) for each ASA to use in turn. Two
other functions support negotiating steps (M_WAIT, M_END).
A synchronization mechanism (M_REQ_SYN) by which an ASA can request the current value
of an objective from a counterpart ASA. With this, there is a corresponding response
function (M_SYNCH) for an ASA that wishes to respond to synchronization requests.
A flood mechanism (M_FLOOD) by which an ASA can cause the current value of an objective
to be flooded throughout the Autonomic Network so that any ASA can receive it. One
application of this is to act as an announcement, avoiding the need for discovery of a widely
applicable objective.

Some example messages and simple message flows are provided in Appendix A.

Convergence of negotiation procedures:
To enable convergence when a responder suggests a new value or condition in a negotiation
step reply, it should be as close as possible to the original request or previous suggestion. The
suggested value of later negotiation steps should be chosen between the suggested values
from the previous two steps. GRASP provides mechanisms to guarantee convergence (or
failure) in a small number of steps, namely a timeout and a maximum number of iterations.

Extensibility:
GRASP intentionally does not have a version number, and it can be extended by adding new
message types and options. The Invalid message (M_INVALID) will be used to signal that an
implementation does not recognize a message or option sent by another implementation. In
normal use, new semantics will be added by defining new synchronization or negotiation
objectives.

[RFC8991]

•

•

•

•

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 10

2.5. GRASP Basic Properties and Mechanisms
2.5.1. Required External Security Mechanism

GRASP does not specify transport security because it is meant to be adapted to different
environments. Every solution adopting GRASP specify a security and transport substrate
used by GRASP in that solution.

The substrate enforce sending and receiving GRASP messages only between members of a
mutually trusted group running GRASP. Each group member is an instance of GRASP. The group
members are nodes of a connected graph. The group and graph are created by the security and
transport substrate and are called the GRASP domain. The substrate must support unicast
messages between any group members and (link-local) multicast messages between adjacent
group members. It must deny messages between group members and non-group members. With
this model, security is provided by enforcing group membership, but any member of the trusted
group can attack the entire network until revoked.

Substrates use cryptographic member authentication and message integrity for GRASP
messages. This can be end to end or hop by hop across the domain. The security and transport
substrate provide mechanisms to remove untrusted members from the group.

If the substrate does not mandate and enforce GRASP message encryption, then any service using
GRASP in such a solution provide protection and encryption for message elements whose
exposure could constitute an attack vector.

The security and transport substrate for GRASP in the ANI is the ACP. Unless otherwise noted, we
assume this security and transport substrate in the remainder of this document. The ACP does
mandate the use of encryption; therefore, GRASP in the ANI can rely on GRASP messages being
encrypted. The GRASP domain is the ACP: all nodes in an autonomic domain connected by
encrypted virtual links formed by the ACP. The ACP uses hop-by-hop security (authentication and
encryption) of messages. Removal of nodes relies on standard PKI certificate revocation or expiry
of sufficiently short-lived certificates. Refer to for more details.

As mentioned in Section 2.3, some GRASP operations might be performed across an
administrative domain boundary by mutual agreement, without the benefit of an ACP. Such
operations be confined to a separate instance of GRASP with its own copy of all GRASP data
structures running across a separate GRASP domain with a security and transport substrate. In
the most simple case, each point-to-point interdomain GRASP peering could be a separate
domain, and the security and transport substrate could be built using transport or network-layer
security protocols. This is subject to future specifications.

An exception to the requirements for the security and transport substrate exists for highly
constrained subsets of GRASP meant to support the establishment of a security and transport
substrate, described in the following section.

MUST

MUST

MUST

MUST

MUST

[RFC8994]

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 11

2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP

Some services may need to use insecure GRASP discovery, response, and flood messages without
being able to use preexisting security associations, for example, as part of discovery for
establishing security associations such as a security substrate for GRASP.

Such operations being intrinsically insecure, they need to be confined to link-local use to
minimize the risk of malicious actions. Possible examples include discovery of candidate ACP
neighbors , discovery of bootstrap proxies , or perhaps initialization services
in networks using GRASP without being fully autonomic (e.g., no ACP). Such usage be
limited to link-local operations on a single interface and be confined to a separate insecure
instance of GRASP with its own copy of all GRASP data structures. This instance is nicknamed
DULL -- Discovery Unsolicited Link-Local.

The detailed rules for the DULL instance of GRASP are as follows:

An initiator send Discovery or Flood Synchronization link-local multicast messages that
 have a loop count of 1, to prevent off-link operations. Other unsolicited GRASP

message types be sent.
A responder silently discard any message whose loop count is not 1.
A responder silently discard any message referring to a GRASP objective that is not
directly part of a service that requires this insecure mode.
A responder relay any multicast messages.
A Discovery Response indicate a link-local address.
A Discovery Response include a Divert option.
A node silently discard any message whose source address is not link-local.

To minimize traffic possibly observed by third parties, GRASP traffic be minimized by
using only Flood Synchronization to announce objectives and their associated locators, rather
than by using Discovery and Discovery Response messages. Further details are out of scope for
this document.

[RFC8994] [RFC8995]
MUST

MUST

• MAY
MUST

MUST NOT
• MUST
• MUST

• MUST NOT
• MUST
• MUST NOT
• MUST

SHOULD

2.5.3. Transport Layer Usage

All GRASP messages, after they are serialized as a CBOR byte string, are transmitted as such
directly over the transport protocol in use. The transport protocol(s) for a GRASP domain are
specified by the security and transport substrate as introduced in Section 2.5.1.

GRASP discovery and flooding messages are designed for GRASP domain-wide flooding through
hop-by-hop link-local multicast forwarding between adjacent GRASP nodes. The GRASP security
and transport substrate needs to specify how these link-local multicasts are transported. This can
be unreliable transport (UDP) but it be reliable transport (e.g., TCP).

If the substrate specifies an unreliable transport such as UDP for discovery and flooding
messages, then it use IP fragmentation because of its loss characteristic, especially in
multi-hop flooding. GRASP then enforce at the user API level a limit to the size of discovery

SHOULD

MUST NOT
MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 12

and flooding messages, so that no fragmentation can occur. For IPv6 transport, this means that
the size of those messages' IPv6 packets must be at most 1280 bytes (unless there is a known
larger minimum link MTU across the whole GRASP domain).

All other GRASP messages are unicast between group members of the GRASP domain. These
 use a reliable transport protocol because GRASP itself does not provide for error detection,

retransmission, or flow control. Unless otherwise specified by the security and transport
substrate, TCP be used.

The security and transport substrate for GRASP in the ANI is the ACP. Unless otherwise noted, we
assume this security and transport substrate in the remainder of this document when describing
GRASP's message transport. In the ACP, TCP is used for GRASP unicast messages. GRASP discovery
and flooding messages also use TCP: these link-local messages are forwarded by replicating them
to all adjacent GRASP nodes on the link via TCP connections to those adjacent GRASP nodes.
Because of this, GRASP in the ANI has no limitations on the size of discovery and flooding
messages with respect to fragmentation issues. While the ACP is being built using a DULL
instance of GRASP, native UDP multicast is used to discover ACP/GRASP neighbors on links.

For link-local UDP multicast, GRASP listens to the well-known GRASP Listen Port (Section 2.6).
Transport connections for discovery and flooding on relay nodes must terminate in GRASP
instances (e.g., GRASP ASAs) so that link-local multicast, hop-by-hop flooding of M_DISCOVERY
and M_FLOOD messages and hop-by-hop forwarding of M_RESPONSE responses and caching of
those responses along the path work correctly.

Unicast transport connections used for synchronization and negotiation can terminate directly in
ASAs that implement objectives; therefore, this traffic does not need to pass through GRASP
instances. For this, the ASA listens on its own dynamically assigned ports, which are
communicated to its peers during discovery. Alternatively, the GRASP instance can also
terminate the unicast transport connections and pass the traffic from/to the ASA if that is
preferable in some implementations (e.g., to better decouple ASAs from network connections).

MUST

MUST

2.5.4. Discovery Mechanism and Procedures

2.5.4.1. Separated Discovery and Negotiation Mechanisms
Although discovery and negotiation or synchronization are defined together in GRASP, they are
separate mechanisms. The discovery process could run independently from the negotiation or
synchronization process. Upon receiving a Discovery message (Section 2.8.4), the recipient node
should return a Discovery Response message in which it either indicates itself as a discovery
responder or diverts the initiator towards another more suitable ASA. However, this response
may be delayed if the recipient needs to relay the Discovery message onward, as described in
Section 2.5.4.4.

The discovery action (M_DISCOVERY) will normally be followed by a negotiation (M_REQ_NEG)
or synchronization (M_REQ_SYN) action. The discovery results could be utilized by the
negotiation protocol to decide which ASA the initiator will negotiate with.

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 13

The initiator of a discovery action for a given objective need not be capable of responding to that
objective as a negotiation counterpart, as a synchronization responder, or as source for flooding.
For example, an ASA might perform discovery even if it only wishes to act as a synchronization
initiator or negotiation initiator. Such an ASA does not itself need to respond to Discovery
messages.

It is also entirely possible to use GRASP discovery without any subsequent negotiation or
synchronization action. In this case, the discovered objective is simply used as a name during the
discovery process, and any subsequent operations between the peers are outside the scope of
GRASP.

2.5.4.2. Discovery Overview
A complete discovery process will start with a multicast Discovery message (M_DISCOVERY) on
the local link. On-link neighbors supporting the discovery objective will respond directly with
Discovery Response (M_RESPONSE) messages. A neighbor with multiple interfaces may respond
with a cached Discovery Response. If it has no cached response, it will relay the Discovery
message on its other GRASP interfaces. If a node receiving the relayed Discovery message
supports the discovery objective, it will respond to the relayed Discovery message. If it has a
cached response, it will respond with that. If not, it will repeat the discovery process, which
thereby becomes iterative. The loop count and timeout will ensure that the process ends. Further
details are given in Section 2.5.4.4.

A Discovery message be sent unicast to a peer node, which then proceed exactly as
if the message had been multicast, except that when TCP is used, the response will be on the
same socket as the query. However, this mode does not guarantee successful discovery in the
general case.

MAY SHOULD

2.5.4.3. Discovery Procedures
Discovery starts as an on-link operation. The Divert option can tell the discovery initiator to
contact an off-link ASA for that discovery objective. If the security and transport substrate of the
GRASP domain (see Section 2.5.3) uses UDP link-local multicast, then the discovery initiator sends
these to the ALL_GRASP_NEIGHBORS link-local multicast address (Section 2.6), and all GRASP
nodes need to listen to this address to act as discovery responders. Because this port is unique in
a device, this is a function of the GRASP instance and not of an individual ASA. As a result, each
ASA will need to register the objectives that it supports with the local GRASP instance.

If an ASA in a neighbor device supports the requested discovery objective, the device
respond to the link-local multicast with a unicast Discovery Response message (Section 2.8.5)
with locator option(s) (Section 2.9.5) unless it is temporarily unavailable. Otherwise, if the
neighbor has cached information about an ASA that supports the requested discovery objective
(usually because it discovered the same objective before), it respond with a Discovery
Response message with a Divert option pointing to the appropriate discovery responder.
However, it respond with a cached response on an interface if it learned that
information from the same interface because the peer in question will answer directly if still
operational.

SHOULD

SHOULD

SHOULD NOT

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 14

If a device has no information about the requested discovery objective and is not acting as a
discovery relay (see Section 2.5.4.4), it silently discard the Discovery message.

The discovery initiator set a reasonable timeout on the discovery process. A suggested
value is 100 milliseconds multiplied by the loop count embedded in the objective.

If no Discovery Response is received within the timeout, the Discovery message be repeated
with a newly generated Session ID (Section 2.7). An exponential backoff be used for
subsequent repetitions to limit the load during busy periods. The details of the backoff algorithm
will depend on the use case for the objective concerned but be consistent with the
recommendations in for low data-volume multicast. Frequent repetition might be
symptomatic of a denial-of-service attack.

After a GRASP device successfully discovers a locator for a discovery responder supporting a
specific objective, it cache this information, including the interface index via
which it was discovered. This cache record be used for future negotiation or
synchronization, and the locator be passed on when appropriate as a Divert option to
another discovery initiator.

The cache mechanism include a lifetime for each entry. The lifetime is derived from a time-
to-live (ttl) parameter in each Discovery Response message. Cached entries be ignored or
deleted after their lifetime expires. In some environments, unplanned address renumbering
might occur. In such cases, the lifetime be short compared to the typical address
lifetime. The discovery mechanism needs to track the node's current address to ensure that
Discovery Responses always indicate the correct address.

If multiple discovery responders are found for the same objective, they all be cached
unless this creates a resource shortage. The method of choosing between multiple responders is
an implementation choice. This choice be available to each ASA, but the GRASP
implementation provide a default choice.

Because discovery responders will be cached in a finite cache, they might be deleted at any time.
In this case, discovery will need to be repeated. If an ASA exits for any reason, its locator might
still be cached for some time, and attempts to connect to it will fail. ASAs need to be robust in
these circumstances.

MUST

MUST

MAY
SHOULD

MUST
[RFC8085]

SHOULD [RFC3493]
MAY

SHOULD

MUST
MUST

SHOULD

SHOULD

MUST
SHOULD

2.5.4.4. Discovery Relaying
A GRASP instance with multiple link-layer interfaces (typically running in a router)
support discovery on all GRASP interfaces. We refer to this as a 'relaying instance'.

DULL instances (Section 2.5.2) are always single-interface instances and therefore
perform discovery relaying.

If a relaying instance receives a Discovery message on a given interface for a specific objective
that it does not support and for which it has not previously cached a discovery responder, it

 relay the query by reissuing a new Discovery message as a link-local multicast on its other
GRASP interfaces.

MUST

MUST NOT

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 15

The relayed Discovery message have the same Session ID and 'initiator' field as the
incoming message (see Section 2.8.4). The IP address in the 'initiator' field is only used to
disambiguate the Session ID and is never used to address Response packets. Response packets are
sent back to the relaying instance, not the original initiator.

The M_DISCOVERY message does not encode the transport address of the originator or relay.
Response packets must therefore be sent to the transport-layer address of the connection on
which the M_DISCOVERY message was received. If the M_DISCOVERY was relayed via a reliable
hop-by-hop transport connection, the response is simply sent back via the same connection.

If the M_DISCOVERY was relayed via link-local (e.g., UDP) multicast, the response is sent back via
a reliable hop-by-hop transport connection with the same port number as the source port of the
link-local multicast. Therefore, if link-local multicast is used and M_RESPONSE messages are
required (which is the case in almost all GRASP instances except for the limited use of DULL
instances in the ANI), GRASP needs to be able to bind to one port number on UDP from which to
originate the link-local multicast M_DISCOVERY messages and the same port number on the
reliable hop-by-hop transport (e.g., TCP by default) to be able to respond to transport connections
from responders that want to send M_RESPONSE messages back. Note that this port does not
need to be the GRASP_LISTEN_PORT.

The relaying instance decrement the loop count within the objective, and relay
the Discovery message if the result is zero. Also, it limit the total rate at which it relays
Discovery messages to a reasonable value in order to mitigate possible denial-of-service attacks.
For example, the rate limit could be set to a small multiple of the observed rate of Discovery
messages during normal operation. The relaying instance cache the Session ID value and
initiator address of each relayed Discovery message until any Discovery Responses have arrived
or the discovery process has timed out. To prevent loops, it relay a Discovery message
that carries a given cached Session ID and initiator address more than once. These precautions
avoid discovery loops and mitigate potential overload.

Since the relay device is unaware of the timeout set by the original initiator, it set a
suitable timeout for the relayed Discovery message. A suggested value is 100 milliseconds
multiplied by the remaining loop count.

The discovery results received by the relaying instance in turn be sent as a Discovery
Response message to the Discovery message that caused the relay action.

MUST

MUST MUST NOT
MUST

MUST

MUST NOT

SHOULD

MUST

2.5.4.5. Rapid Mode (Discovery with Negotiation or Synchronization)
A Discovery message include an objective option. This allows a rapid mode of negotiation
(Section 2.5.5.1) or synchronization (Section 2.5.6.3). Rapid mode is currently limited to a single
objective for simplicity of design and implementation. A possible future extension is to allow
multiple objectives in rapid mode for greater efficiency.

MAY

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 16

2.5.5. Negotiation Procedures

A negotiation initiator opens a transport connection to a counterpart ASA using the address,
protocol, and port obtained during discovery. It then sends a negotiation request (using
M_REQ_NEG) to the counterpart, including a specific negotiation objective. It may request the
negotiation counterpart to make a specific configuration. Alternatively, it may request a certain
simulation or forecast result by sending a dry-run configuration. The details, including the
distinction between a dry run and a live configuration change, will be defined separately for
each type of negotiation objective. Any state associated with a dry-run operation, such as
temporarily reserving a resource for subsequent use in a live run, is entirely a matter for the
designer of the ASA concerned.

Each negotiation session as a whole is subject to a timeout (default GRASP_DEF_TIMEOUT
milliseconds, Section 2.6), initialized when the request is sent (see Section 2.8.6). If no reply
message of any kind is received within the timeout, the negotiation request be repeated
with a newly generated Session ID (Section 2.7). An exponential backoff be used for
subsequent repetitions. The details of the backoff algorithm will depend on the use case for the
objective concerned.

If the counterpart can immediately apply the requested configuration, it will give an immediate
positive (O_ACCEPT) answer using the Negotiation End (M_END) message. This will end the
negotiation phase immediately. Otherwise, it will negotiate (using M_NEGOTIATE). It will reply
with a proposed alternative configuration that it can apply (typically, a configuration that uses
fewer resources than requested by the negotiation initiator). This will start a bidirectional
negotiation using the Negotiate (M_NEGOTIATE) message to reach a compromise between the
two ASAs.

The negotiation procedure is ended when one of the negotiation peers sends a Negotiation End
(M_END) message, which contains an Accept (O_ACCEPT) or Decline (O_DECLINE) option and
does not need a response from the negotiation peer. Negotiation may also end in failure
(equivalent to a decline) if a timeout is exceeded or a loop count is exceeded. When the
procedure ends for whatever reason, the transport connection be closed. A transport
session failure is treated as a negotiation failure.

A negotiation procedure concerns one objective and one counterpart. Both the initiator and the
counterpart may take part in simultaneous negotiations with various other ASAs or in
simultaneous negotiations about different objectives. Thus, GRASP is expected to be used in a
multithreaded mode or its logical equivalent. Certain negotiation objectives may have
restrictions on multithreading, for example to avoid over-allocating resources.

Some configuration actions, for example, wavelength switching in optical networks, might take
considerable time to execute. The ASA concerned needs to allow for this by design, but GRASP
does allow for a peer to insert latency in a negotiation process if necessary (Section 2.8.9,
M_WAIT).

MAY
SHOULD

SHOULD

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 17

2.5.5.1. Rapid Mode (Discovery/Negotiation Linkage)
A Discovery message include a Negotiation Objective option. In this case, it is as if the
initiator sent the sequence M_DISCOVERY immediately followed by M_REQ_NEG. This has
implications for the construction of the GRASP core, as it must carefully pass the contents of the
Negotiation Objective option to the ASA so that it may evaluate the objective directly. When a
Negotiation Objective option is present, the ASA replies with an M_NEGOTIATE message (or
M_END with O_ACCEPT if it is immediately satisfied with the proposal) rather than with an
M_RESPONSE. However, if the recipient node does not support rapid mode, discovery will
continue normally.

It is possible that a Discovery Response will arrive from a responder that does not support rapid
mode before such a Negotiation message arrives. In this case, rapid mode will not occur.

This rapid mode could reduce the interactions between nodes so that a higher efficiency could be
achieved. However, a network in which some nodes support rapid mode and others do not will
have complex timing-dependent behaviors. Therefore, the rapid negotiation function be
disabled by default.

MAY

SHOULD

2.5.6. Synchronization and Flooding Procedures

2.5.6.1. Unicast Synchronization
A synchronization initiator opens a transport connection to a counterpart ASA using the address,
protocol, and port obtained during discovery. It then sends a Request Synchronization message
(M_REQ_SYN, Section 2.8.6) to the counterpart, including a specific synchronization objective.
The counterpart responds with a Synchronization message (M_SYNCH, Section 2.8.10) containing
the current value of the requested synchronization objective. No further messages are needed,
and the transport connection be closed. A transport session failure is treated as a
synchronization failure.

If no reply message of any kind is received within a given timeout (default GRASP_DEF_TIMEOUT
milliseconds, Section 2.6), the synchronization request be repeated with a newly generated
Session ID (Section 2.7). An exponential backoff be used for subsequent repetitions. The
details of the backoff algorithm will depend on the use case for the objective concerned.

SHOULD

MAY
SHOULD

2.5.6.2. Flooding
In the case just described, the message exchange is unicast and concerns only one
synchronization objective. For large groups of nodes requiring the same data, synchronization
flooding is available. For this, a flooding initiator send an unsolicited Flood Synchronization
message (Section 2.8.11) containing one or more Synchronization Objective option(s), if and only
if the specification of those objectives permits it. This is sent as a multicast message to the
ALL_GRASP_NEIGHBORS multicast address (Section 2.6).

Receiving flood multicasts is a function of the GRASP core, as in the case of discovery multicasts
(Section 2.5.4.3).

MAY

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 18

To ensure that flooding does not result in a loop, the originator of the Flood Synchronization
message set the loop count in the objectives to a suitable value (the default is
GRASP_DEF_LOOPCT). Also, a suitable mechanism is needed to avoid excessive multicast traffic.
This mechanism be defined as part of the specification of the synchronization objective(s)
concerned. It might be a simple rate limit or a more complex mechanism such as the Trickle
algorithm .

A GRASP device with multiple link-layer interfaces (typically a router) support
synchronization flooding on all GRASP interfaces. If it receives a multicast Flood Synchronization
message on a given interface, it relay it by reissuing a Flood Synchronization message as a
link-local multicast on its other GRASP interfaces. The relayed message have the same
Session ID as the incoming message and be tagged with the IP address of its original
initiator.

Link-layer flooding is supported by GRASP by setting the loop count to 1 and sending with a link-
local source address. Floods with link-local source addresses and a loop count other than 1 are
invalid, and such messages be discarded.

The relaying device decrement the loop count within the first objective and
relay the Flood Synchronization message if the result is zero. Also, it limit the total rate at
which it relays Flood Synchronization messages to a reasonable value, in order to mitigate
possible denial-of-service attacks. For example, the rate limit could be set to a small multiple of
the observed rate of flood messages during normal operation. The relaying device cache
the Session ID value and initiator address of each relayed Flood Synchronization message for a
time not less than twice GRASP_DEF_TIMEOUT milliseconds. To prevent loops, it relay
a Flood Synchronization message that carries a given cached Session ID and initiator address
more than once. These precautions avoid synchronization loops and mitigate potential overload.

Note that this mechanism is unreliable in the case of sleeping nodes, or new nodes that join the
network, or nodes that rejoin the network after a fault. An ASA that initiates a flood
repeat the flood at a suitable frequency, which be consistent with the recommendations in

 for low data-volume multicast. The ASA also act as a synchronization
responder for the objective(s) concerned. Thus nodes that require an objective subject to flooding
can either wait for the next flood or request unicast synchronization for that objective.

The multicast messages for synchronization flooding are subject to the security rules in Section
2.5.1. In practice, this means that they be transmitted and be ignored on receipt
unless there is an operational ACP or equivalent strong security in place. However, because of
the security weakness of link-local multicast (Section 3), synchronization objectives that are
flooded contain unencrypted private information and be validated by the
recipient ASA.

MUST

MUST

[RFC6206]

MUST

MUST
MUST

MUST

MUST

MUST MUST NOT
MUST

MUST

MUST NOT

SHOULD
MUST

[RFC8085] SHOULD

MUST NOT MUST

SHOULD NOT SHOULD

2.5.6.3. Rapid Mode (Discovery/Synchronization Linkage)
A Discovery message include a Synchronization Objective option. In this case, the Discovery
message also acts as a Request Synchronization message to indicate to the discovery responder
that it could directly reply to the discovery initiator with a Synchronization message (Section

MAY

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 19

2.8.10) with synchronization data for rapid processing, if the discovery target supports the
corresponding synchronization objective. The design implications are similar to those discussed
in Section 2.5.5.1.

It is possible that a Discovery Response will arrive from a responder that does not support rapid
mode before such a Synchronization message arrives. In this case, rapid mode will not occur.

This rapid mode could reduce the interactions between nodes so that a higher efficiency could be
achieved. However, a network in which some nodes support rapid mode and others do not will
have complex timing-dependent behaviors. Therefore, the rapid synchronization function

 be configured off by default and be configured on or off by Intent.SHOULD MAY

2.6. GRASP Constants

ALL_GRASP_NEIGHBORS
A link-local scope multicast address used by a GRASP-enabled device to discover GRASP-
enabled neighbor (i.e., on-link) devices. All devices that support GRASP are members of this
multicast group.

IPv6 multicast address: ff02::13
IPv4 multicast address: 224.0.0.119

GRASP_LISTEN_PORT (7017)
A well-known UDP user port that every GRASP-enabled network device listen to for
link-local multicasts when UDP is used for M_DISCOVERY or M_FLOOD messages in the GRASP
instance. This user port also be used to listen for TCP or UDP unicast messages in a
simple implementation of GRASP (Section 2.5.3).

GRASP_DEF_TIMEOUT (60000 milliseconds)
The default timeout used to determine that an operation has failed to complete.

GRASP_DEF_LOOPCT (6)
The default loop count used to determine that a negotiation has failed to complete and to
avoid looping messages.

GRASP_DEF_MAX_SIZE (2048)
The default maximum message size in bytes.

•
•

MUST

MAY

2.7. Session Identifier (Session ID)
This is an up to 32-bit opaque value used to distinguish multiple sessions between the same two
devices. A new Session ID be generated by the initiator for every new Discovery, Flood
Synchronization, or Request message. All responses and follow-up messages in the same
discovery, synchronization, or negotiation procedure carry the same Session ID.

MUST

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 20

The Session ID have a very low collision rate locally. It be generated by a
pseudorandom number generator (PRNG) using a locally generated seed that is unlikely to be
used by any other device in the same network. The PRNG be cryptographically strong

. When allocating a new Session ID, GRASP check that the value is not already in
use and check that it has not been used recently by consulting a cache of current and
recent sessions. In the unlikely event of a clash, GRASP generate a new value.

However, there is a finite probability that two nodes might generate the same Session ID value.
For that reason, when a Session ID is communicated via GRASP, the receiving node tag it
with the initiator's IP address to allow disambiguation. In the highly unlikely event of two peers
opening sessions with the same Session ID value, this tag will allow the two sessions to be
distinguished. Multicast GRASP messages and their responses, which may be relayed between
links, therefore include a field that carries the initiator's global IP address.

There is a highly unlikely race condition in which two peers start simultaneous negotiation
sessions with each other using the same Session ID value. Depending on various implementation
choices, this might lead to the two sessions being confused. See Section 2.8.6 for details of how to
avoid this.

SHOULD MUST

SHOULD
[RFC4086] MUST

SHOULD
MUST

MUST

2.8. GRASP Messages
2.8.1. Message Overview

This section defines the GRASP message format and message types. Message types not listed here
are reserved for future use.

The messages currently defined are:

Discovery and Discovery Response (M_DISCOVERY, M_RESPONSE).

Request Negotiation, Negotiation, Confirm Waiting, and Negotiation End (M_REQ_NEG,
M_NEGOTIATE, M_WAIT, M_END).

Request Synchronization, Synchronization, and Flood Synchronization (M_REQ_SYN,
M_SYNCH, M_FLOOD).

No Operation and Invalid (M_NOOP, M_INVALID).

2.8.2. GRASP Message Format

GRASP messages share an identical header format and a variable format area for options. GRASP
message headers and options are transmitted in Concise Binary Object Representation (CBOR)

. In this specification, they are described using Concise Data Definition Language
(CDDL) . Fragmentary CDDL is used to describe each item in this section. A complete
and normative CDDL specification of GRASP is given in Section 4, including constants such as
message types.

Every GRASP message, except the No Operation message, carries a Session ID (Section 2.7).
Options are then presented serially.

[RFC8949]
[RFC8610]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 21

In fragmentary CDDL, every GRASP message follows the pattern:

The MESSAGE_TYPE indicates the type of the message and thus defines the expected options. Any
options received that are not consistent with the MESSAGE_TYPE be silently discarded.

The No Operation (noop) message is described in Section 2.8.13.

The various MESSAGE_TYPE values are defined in Section 4.

All other message elements are described below and formally defined in Section 4.

If an unrecognized MESSAGE_TYPE is received in a unicast message, an Invalid message (Section
2.8.12) be returned. Otherwise, the message be logged and be discarded. If an
unrecognized MESSAGE_TYPE is received in a multicast message, it be logged and be
silently discarded.

2.8.3. Message Size

GRASP nodes be able to receive unicast messages of at least GRASP_DEF_MAX_SIZE bytes.
GRASP nodes send unicast messages longer than GRASP_DEF_MAX_SIZE bytes unless a
longer size is explicitly allowed for the objective concerned. For example, GRASP negotiation
itself could be used to agree on a longer message size.

The message parser used by GRASP should be configured to know about the
GRASP_DEF_MAX_SIZE, or any larger negotiated message size, so that it may defend against
overly long messages.

The maximum size of multicast messages (M_DISCOVERY and M_FLOOD) depends on the link-
layer technology or the link-adaptation layer in use.

 grasp-message = (message .within message-structure) / noop-message

 message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

 MESSAGE_TYPE = 0..255
 session-id = 0..4294967295 ; up to 32 bits
 grasp-option = any

SHOULD

MAY MAY MUST
MAY MUST

MUST
MUST NOT

2.8.4. Discovery Message

In fragmentary CDDL, a Discovery message follows the pattern:

A discovery initiator sends a Discovery message to initiate a discovery process for a particular
objective option.

 discovery-message = [M_DISCOVERY, session-id, initiator, objective]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 22

The discovery initiator sends all Discovery messages via UDP to port GRASP_LISTEN_PORT at the
link-local ALL_GRASP_NEIGHBORS multicast address on each link-layer interface in use by
GRASP. It then listens for unicast TCP responses on a given port and stores the discovery results,
including responding discovery objectives and corresponding unicast locators.

The listening port used for TCP be the same port as used for sending the Discovery UDP
multicast, on a given interface. In an implementation with a single GRASP instance in a node, this

 be GRASP_LISTEN_PORT. To support multiple instances in the same node, the GRASP
discovery mechanism in each instance needs to find, for each interface, a dynamic port that it
can bind to for both sending UDP link-local multicast and listening for TCP before initiating any
discovery.

The 'initiator' field in the message is a globally unique IP address of the initiator for the sole
purpose of disambiguating the Session ID in other nodes. If for some reason the initiator does not
have a globally unique IP address, it use a link-local address that is highly likely to be
unique for this purpose, for example, using . Determination of a node's globally unique
IP address is implementation dependent.

A Discovery message include exactly one of the following:

A Discovery Objective option (Section 2.10.1). Its loop count be set to a suitable value to
prevent discovery loops (default value is GRASP_DEF_LOOPCT). If the discovery initiator
requires only on-link responses, the loop count be set to 1.
A Negotiation Objective option (Section 2.10.1). This is used both for the purpose of discovery
and to indicate to the discovery target that it directly reply to the discovery initiator
with a Negotiation message for rapid processing, if it could act as the corresponding
negotiation counterpart. The sender of such a Discovery message initialize a
negotiation timer and loop count in the same way as a Request Negotiation message (Section
2.8.6).
A Synchronization Objective option (Section 2.10.1). This is used both for the purpose of
discovery and to indicate to the discovery target that it directly reply to the discovery
initiator with a Synchronization message for rapid processing, if it could act as the
corresponding synchronization counterpart. Its loop count be set to a suitable value to
prevent discovery loops (default value is GRASP_DEF_LOOPCT).

As mentioned in Section 2.5.4.2, a Discovery message be sent unicast to a peer node, which
 then proceed exactly as if the message had been multicast.

MUST

MAY

MUST
[RFC7217]

MUST

• MUST

MUST
•

MAY

MUST

•
MAY

MUST

MAY
SHOULD

2.8.5. Discovery Response Message

In fragmentary CDDL, a Discovery Response message follows the pattern:

 response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective]

 ttl = 0..4294967295 ; in milliseconds

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 23

A node that receives a Discovery message send a Discovery Response message if and
only if it can respond to the discovery.

It contain the same Session ID and initiator as the Discovery message.

It contain a time-to-live (ttl) for the validity of the response, given as a positive integer
value in milliseconds. Zero implies a value significantly greater than GRASP_DEF_TIMEOUT
milliseconds (Section 2.6). A suggested value is ten times that amount.

It include a copy of the discovery objective from the Discovery message.

It is sent to the sender of the Discovery message via TCP at the port used to send the Discovery
message (as explained in Section 2.8.4). In the case of a relayed Discovery message, the Discovery
Response is thus sent to the relay, not the original initiator.

In all cases, the transport session be closed after sending the Discovery Response. A
transport session failure is treated as no response.

If the responding node supports the discovery objective of the discovery, it include at least
one kind of locator option (Section 2.9.5) to indicate its own location. A sequence of multiple
kinds of locator options (e.g., IP address option and FQDN option) is also valid.

If the responding node itself does not support the discovery objective, but it knows the locator of
the discovery objective, then it respond to the Discovery message with a Divert option
(Section 2.9.2) embedding a locator option or a combination of multiple kinds of locator options
that indicate the locator(s) of the discovery objective.

More details on the processing of Discovery Responses are given in Section 2.5.4.

SHOULD

MUST

MUST

MAY

SHOULD

MUST

SHOULD

2.8.6. Request Messages

In fragmentary CDDL, Request Negotiation and Request Synchronization messages follow the
patterns:

A negotiation or synchronization requesting node sends the appropriate Request message to the
unicast address of the negotiation or synchronization counterpart, using the appropriate
protocol and port numbers (selected from the discovery result). If the discovery result is an
FQDN, it will be resolved first.

A Request message include the relevant objective option. In the case of Request
Negotiation, the objective option include the requested value.

request-negotiation-message = [M_REQ_NEG, session-id, objective]

request-synchronization-message = [M_REQ_SYN, session-id, objective]

MUST
MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 24

When an initiator sends a Request Negotiation message, it initialize a negotiation timer for
the new negotiation thread. The default is GRASP_DEF_TIMEOUT milliseconds. Unless this
timeout is modified by a Confirm Waiting message (Section 2.8.9), the initiator will consider that
the negotiation has failed when the timer expires.

Similarly, when an initiator sends a Request Synchronization, it initialize a
synchronization timer. The default is GRASP_DEF_TIMEOUT milliseconds. The initiator will
consider that synchronization has failed if there is no response before the timer expires.

When an initiator sends a Request message, it initialize the loop count of the objective
option with a value defined in the specification of the option or, if no such value is specified, with
GRASP_DEF_LOOPCT.

If a node receives a Request message for an objective for which no ASA is currently listening, it
 immediately close the relevant socket to indicate this to the initiator. This is to avoid

unnecessary timeouts if, for example, an ASA exits prematurely but the GRASP core is listening
on its behalf.

To avoid the highly unlikely race condition in which two nodes simultaneously request sessions
with each other using the same Session ID (Section 2.7), a node verify that the received
Session ID is not already locally active when it receives a Request message. In case of a clash, it

 discard the Request message, in which case the initiator will detect a timeout.

MUST

SHOULD

MUST

MUST

MUST

MUST

2.8.7. Negotiation Message

In fragmentary CDDL, a Negotiation message follows the pattern:

A negotiation counterpart sends a Negotiation message in response to a Request Negotiation
message, a Negotiation message, or a Discovery message in rapid mode. A negotiation process

 include multiple steps.

The Negotiation message include the relevant Negotiation Objective option, with its value
updated according to progress in the negotiation. The sender decrement the loop count by
1. If the loop count becomes zero, the message be sent. In this case, the negotiation
session has failed and will time out.

 negotiation-message = [M_NEGOTIATE, session-id, objective]

MAY

MUST
MUST

MUST NOT

2.8.8. Negotiation End Message

In fragmentary CDDL, a Negotiation End message follows the pattern:

A negotiation counterpart sends a Negotiation End message to close the negotiation. It
contain either an Accept option or a Decline option, defined in Section 2.9.3 and Section 2.9.4. It
could be sent either by the requesting node or the responding node.

 end-message = [M_END, session-id, accept-option / decline-option]

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 25

2.8.9. Confirm Waiting Message

In fragmentary CDDL, a Confirm Waiting message follows the pattern:

A responding node sends a Confirm Waiting message to ask the requesting node to wait for a
further negotiation response. It might be that the local process needs more time or that the
negotiation depends on another triggered negotiation. This message include any other
options. When received, the waiting time value overwrites and restarts the current negotiation
timer (Section 2.8.6).

The responding node send a Negotiation, Negotiation End, or another Confirm Waiting
message before the negotiation timer expires. If not, when the initiator's timer expires, the
initiator treat the negotiation procedure as failed.

 wait-message = [M_WAIT, session-id, waiting-time]
 waiting-time = 0..4294967295 ; in milliseconds

MUST NOT

SHOULD

MUST

2.8.10. Synchronization Message

In fragmentary CDDL, a Synchronization message follows the pattern:

A node that receives a Request Synchronization, or a Discovery message in rapid mode, sends
back a unicast Synchronization message with the synchronization data, in the form of a GRASP
option for the specific synchronization objective present in the Request Synchronization.

 synch-message = [M_SYNCH, session-id, objective]

2.8.11. Flood Synchronization Message

In fragmentary CDDL, a Flood Synchronization message follows the pattern:

A node initiate flooding by sending an unsolicited Flood Synchronization message with
synchronization data. This be sent to port GRASP_LISTEN_PORT at the link-local
ALL_GRASP_NEIGHBORS multicast address, in accordance with the rules in Section 2.5.6.

The initiator address is provided, as described for Discovery messages (Section 2.8.4), only to
disambiguate the Session ID.

The message contain a time-to-live (ttl) for the validity of the contents, given as a
positive integer value in milliseconds. There is no default; zero indicates an indefinite
lifetime.

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 ttl = 0..4294967295 ; in milliseconds

MAY
MAY

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 26

The synchronization data are in the form of GRASP option(s) for specific synchronization
objective(s). The loop count(s) be set to a suitable value to prevent flood loops (default
value is GRASP_DEF_LOOPCT).

Each objective option be followed by a locator option (Section 2.9.5) associated with the
flooded objective. In its absence, an empty option be included to indicate a null locator.

A node that receives a Flood Synchronization message cache the received objectives for
use by local ASAs. Each cached objective be tagged with the locator option sent with it, or
with a null tag if an empty locator option was sent. If a subsequent Flood Synchronization
message carries an objective with the same name and the same tag, the corresponding cached
copy of the objective be overwritten. If a subsequent Flood Synchronization message
carrying an objective with same name arrives with a different tag, a new cached entry be
created.

Note: the purpose of this mechanism is to allow the recipient of flooded values to distinguish
between different senders of the same objective, and if necessary communicate with them using
the locator, protocol, and port included in the locator option. Many objectives will not need this
mechanism, so they will be flooded with a null locator.

Cached entries be ignored or deleted after their lifetime expires.

MUST

MAY
MUST

MUST
MUST

MUST
MUST

MUST

2.8.12. Invalid Message

In fragmentary CDDL, an Invalid message follows the pattern:

This message be sent by an implementation in response to an incoming unicast message
that it considers invalid. The Session ID value be copied from the incoming message. The
content be diagnostic information such as a partial copy of the invalid message up to the
maximum message size. An M_INVALID message be silently ignored by a recipient.
However, it could be used in support of extensibility, since it indicates that the remote node does
not support a new or obsolete message or option.

An M_INVALID message be sent in response to an M_INVALID message.

 invalid-message = [M_INVALID, session-id, ?any]

MAY
MUST

SHOULD
MAY

MUST NOT

2.8.13. No Operation Message

In fragmentary CDDL, a No Operation message follows the pattern:

This message be sent by an implementation that for practical reasons needs to initialize a
socket. It be silently ignored by a recipient.

 noop-message = [M_NOOP]

MAY
MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 27

2.9. GRASP Options
This section defines the GRASP options for the negotiation and synchronization protocol
signaling. Additional options may be defined in the future.

2.9.1. Format of GRASP Options

GRASP options be CBOR arrays that start with an unsigned integer identifying the
specific option type carried in this option. These option types are formally defined in Section 4.

GRASP options may be defined to include encapsulated GRASP options.

SHOULD MUST

2.9.2. Divert Option

The Divert option is used to redirect a GRASP request to another node, which may be more
appropriate for the intended negotiation or synchronization. It may redirect to an entity that is
known as a specific negotiation or synchronization counterpart (on-link or off-link) or a default
gateway. The Divert option only be encapsulated in Discovery Response messages. If found
elsewhere, it be silently ignored.

A discovery initiator ignore a Divert option if it only requires direct Discovery Responses.

In fragmentary CDDL, the Divert option follows the pattern:

The embedded locator option(s) (Section 2.9.5) point to diverted destination target(s) in response
to a Discovery message.

MUST
SHOULD

MAY

 divert-option = [O_DIVERT, +locator-option]

2.9.3. Accept Option

The Accept option is used to indicate to the negotiation counterpart that the proposed negotiation
content is accepted.

The Accept option only be encapsulated in Negotiation End messages. If found elsewhere, it
 be silently ignored.

In fragmentary CDDL, the Accept option follows the pattern:

MUST
SHOULD

 accept-option = [O_ACCEPT]

2.9.4. Decline Option

The Decline option is used to indicate to the negotiation counterpart the proposed negotiation
content is declined and to end the negotiation process.

The Decline option only be encapsulated in Negotiation End messages. If found elsewhere,
it be silently ignored.

MUST
SHOULD

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 28

In fragmentary CDDL, the Decline option follows the pattern:

Note: there might be scenarios where an ASA wants to decline the proposed value and restart the
negotiation process. In this case, it is an implementation choice whether to send a Decline option
or to continue with a Negotiation message, with an objective option that contains a null value or
one that contains a new value that might achieve convergence.

 decline-option = [O_DECLINE, ?reason]
 reason = text ; optional UTF-8 error message

2.9.5. Locator Options

These locator options are used to present reachability information for an ASA, a device, or an
interface. They are Locator IPv6 Address option, Locator IPv4 Address option, Locator FQDN
option, and Locator URI option.

Since ASAs will normally run as independent user programs, locator options need to indicate the
network-layer locator plus the transport protocol and port number for reaching the target. For
this reason, the locator options for IP addresses and FQDNs include this information explicitly. In
the case of the Locator URI option, this information can be encoded in the URI itself.

Note: It is assumed that all locators used in locator options are in scope throughout the GRASP
domain. As stated in Section 2.2, GRASP is not intended to work across disjoint addressing or
naming realms.

2.9.5.1. Locator IPv6 Address Option
In fragmentary CDDL, the Locator IPv6 Address option follows the pattern:

The content of this option is a binary IPv6 address followed by the protocol number and port
number to be used.

Note 1: The IPv6 address normally have global scope. However, during initialization, a
link-local address be used for specific objectives only (Section 2.5.2). In this case, the
corresponding Discovery Response message be sent via the interface to which the link-
local address applies.

Note 2: A link-local IPv6 address be used when this option is included in a Divert
option.

 ipv6-locator-option = [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = bytes .size 16

 transport-proto = IPPROTO_TCP / IPPROTO_UDP
 IPPROTO_TCP = 6
 IPPROTO_UDP = 17
 port-number = 0..65535

MUST
MAY

MUST

MUST NOT

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 29

Note 3: The IPPROTO values are taken from the existing IANA Protocol Numbers registry in order
to specify TCP or UDP. If GRASP requires future values that are not in that registry, a new registry
for values outside the range 0..255 will be needed.

2.9.5.2. Locator IPv4 Address Option
In fragmentary CDDL, the Locator IPv4 Address option follows the pattern:

The content of this option is a binary IPv4 address followed by the protocol number and port
number to be used.

Note: If an operator has internal network address translation for IPv4, this option be
used within the Divert option.

2.9.5.3. Locator FQDN Option
In fragmentary CDDL, the Locator FQDN option follows the pattern:

The content of this option is the FQDN of the target followed by the protocol number and port
number to be used.

Note 1: Any FQDN that might not be valid throughout the network in question, such as a
Multicast DNS name , be used when this option is used within the Divert
option.

Note 2: Normal GRASP operations are not expected to use this option. It is intended for special
purposes such as discovering external services.

2.9.5.4. Locator URI Option
In fragmentary CDDL, the Locator URI option follows the pattern:

The content of this option is the URI of the target followed by the protocol number and port
number to be used (or by null values if not required) .

 ipv4-locator-option = [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
 ipv4-address = bytes .size 4

MUST NOT

 fqdn-locator-option = [O_FQDN_LOCATOR, text,
 transport-proto, port-number]

[RFC6762] MUST NOT

 uri-locator-option = [O_URI_LOCATOR, text,
 transport-proto / null, port-number / null]

[RFC3986]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 30

Note 1: Any URI which might not be valid throughout the network in question, such as one based
on a Multicast DNS name , be used when this option is used within the
Divert option.

Note 2: Normal GRASP operations are not expected to use this option. It is intended for special
purposes such as discovering external services. Therefore, its use is not further described in this
specification.

[RFC6762] MUST NOT

2.10. Objective Options
2.10.1. Format of Objective Options

An objective option is used to identify objectives for the purposes of discovery, negotiation, or
synchronization. All objectives be in the following format, described in fragmentary CDDL:

All objectives are identified by a unique name that is a UTF-8 string , to be compared
byte by byte.

The names of generic objectives include a colon (":") and be registered with
IANA (Section 5).

The names of privately defined objectives include at least one colon (":"). The string
preceding the last colon in the name be globally unique and in some way identify the
entity or person defining the objective. The following three methods be used to create such
a globally unique string:

The unique string is a decimal number representing a registered 32-bit Private Enterprise
Number (PEN) that uniquely identifies the enterprise defining the objective.
The unique string is a FQDN that uniquely identifies the entity or person defining the
objective.
The unique string is an email address that uniquely identifies the entity or person defining
the objective.

GRASP treats the objective name as an opaque string. For example, "EX1", "32473:EX1",
"example.com:EX1", "example.org:EX1", and "user@example.org:EX1" are five different
objectives.

The 'objective-flags' field is described in Section 2.10.2.

MUST

objective = [objective-name, objective-flags,
 loop-count, ?objective-value]

objective-name = text
objective-value = any
loop-count = 0..255

[RFC3629]

MUST NOT MUST

MUST
MUST

MAY

1.
[RFC5612]

2.

3.

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 31

The 'loop-count' field is used for terminating negotiation as described in Section 2.8.7. It is also
used for terminating discovery as described in Section 2.5.4 and for terminating flooding as
described in Section 2.5.6.2. It is placed in the objective rather than in the GRASP message format
because, as far as the ASA is concerned, it is a property of the objective itself.

The 'objective-value' field expresses the actual value of a negotiation or synchronization
objective. Its format is defined in the specification of the objective and may be a simple value or a
data structure of any kind, as long as it can be represented in CBOR. It is optional only in a
Discovery or Discovery Response message.

2.10.2. Objective Flags

An objective may be relevant for discovery only, for discovery and negotiation, or for discovery
and synchronization. This is expressed in the objective by logical flag bits:

These bits are independent and may be combined appropriately, e.g., (F_DISC and F_SYNCH) or
(F_DISC and F_NEG) or (F_DISC and F_NEG and F_NEG_DRY).

Note that for a given negotiation session, an objective must be used either for negotiation or for
dry-run negotiation. Mixing the two modes in a single negotiation is not possible.

 objective-flags = uint .bits objective-flag
 objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is a dry run
)

2.10.3. General Considerations for Objective Options

As mentioned above, objective options be assigned a unique name. As long as privately
defined objective options obey the rules above, this document does not restrict their choice of
name, but the entity or person concerned publish the names in use.

Names are expressed as UTF-8 strings for convenience in designing objective options for
localized use. For generic usage, names expressed in the ASCII subset of UTF-8 are

. Designers planning to use non-ASCII names are strongly advised to consult
 or its successor to understand the complexities involved. Since GRASP compares

names byte by byte, all issues of Unicode profiling and canonicalization be specified in the
design of the objective option.

All objective options respect the CBOR patterns defined above as "objective" and
replace the 'any' field with a valid CBOR data definition for the relevant use case and application.

An objective option that contains no additional fields beyond its 'loop-count' can only be a
discovery objective and only be used in Discovery and Discovery Response messages.

MUST

SHOULD

RECOMMENDED
[RFC8264]

MUST

MUST MUST

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 32

2.10.4. Organizing of Objective Options

Generic objective options be specified in documents available to the public and be
designed to use either the negotiation or the synchronization mechanism described above.

As noted earlier, one negotiation objective is handled by each GRASP negotiation thread.
Therefore, a negotiation objective, which is based on a specific function or action, be
organized as a single GRASP option. It is to organize multiple negotiation
objectives into a single option nor to split a single function or action into multiple negotiation
objectives.

It is important to understand that GRASP negotiation does not support transactional integrity. If
transactional integrity is needed for a specific objective, this must be ensured by the ASA. For
example, an ASA might need to ensure that it only participates in one negotiation thread at the
same time. Such an ASA would need to stop listening for incoming negotiation requests before
generating an outgoing negotiation request.

A synchronization objective be organized as a single GRASP option.

Some objectives will support more than one operational mode. An example is a negotiation
objective with both a dry-run mode (where the negotiation is to determine whether the other
end can, in fact, make the requested change without problems) and a live mode, as explained in
Section 2.5.5. The semantics of such modes will be defined in the specification of the objectives.
These objectives include flags indicating the applicable mode(s).

An issue requiring particular attention is that GRASP itself is not a transactionally safe protocol.
Any state associated with a dry-run operation, such as temporarily reserving a resource for
subsequent use in a live run, is entirely a matter for the designer of the ASA concerned.

The Negotiation Objective options contain negotiation objectives, which vary according to
different functions and/or services. They be carried by Discovery, Request Negotiation, or
Negotiation messages only. The negotiation initiator set the initial 'loop-count' to a value
specified in the specification of the objective or, if no such value is specified, to
GRASP_DEF_LOOPCT.

For most scenarios, there should be initial values in the negotiation requests. Consequently, the
Negotiation Objective options always be completely presented in a Request Negotiation
message, or in a Discovery message in rapid mode. If there is no initial value, the 'value' field

 be set to the 'null' value defined by CBOR.

Synchronization Objective options are similar, but be carried by Discovery, Discovery
Response, Request Synchronization, or Flood Synchronization messages only. They include
'value' fields only in Synchronization or Flood Synchronization messages.

The design of an objective interacts in various ways with the design of the ASAs that will use it.
ASA design considerations are discussed in .

MUST
MUST

MUST

SHOULD

MUST

[ASA-GUIDELINES]

MUST SHOULD

SHOULD
NOT RECOMMENDED

SHOULD

SHOULD

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 33

As indicated in Section 2.1, an objective's value may include multiple parameters. Parameters
might be categorized into two classes: the obligatory ones presented as fixed fields and the
optional ones presented in some other form of data structure embedded in CBOR. The format
might be inherited from an existing management or configuration protocol, with the objective
option acting as a carrier for that format. The data structure might be defined in a formal
language, but that is a matter for the specifications of individual objectives. There are many
candidates, according to the context, such as ABNF, RBNF, XML Schema, YANG, etc. GRASP itself is
agnostic on these questions. The only restriction is that the format can be mapped into CBOR.

It is to mix parameters that have significantly different response-time
characteristics in a single objective. Separate objectives are more suitable for such a scenario.

All objectives support GRASP discovery. However, as mentioned in Section 2.3, it is
acceptable for an ASA to use an alternative method of discovery.

Normally, a GRASP objective will refer to specific technical parameters as explained in Section
2.1. However, it is acceptable to define an abstract objective for the purpose of managing or
coordinating ASAs. It is also acceptable to define a special-purpose objective for purposes such as
trust bootstrapping or formation of the ACP.

To guarantee convergence, a limited number of rounds or a timeout is needed for each
negotiation objective. Therefore, the definition of each negotiation objective clearly
specify this, for example, a default loop count and timeout, so that the negotiation can always be
terminated properly. If not, the GRASP defaults will apply.

There must be a well-defined procedure for concluding that a negotiation cannot succeed, and if
so, deciding what happens next (e.g., deadlock resolution, tie-breaking, or reversion to best-effort
service). This be specified for individual negotiation objectives.

2.10.5. Experimental and Example Objective Options

The names "EX0" through "EX9" have been reserved for experimental options. Multiple names
have been assigned because a single experiment may use multiple options simultaneously. These
experimental options are highly likely to have different meanings when used for different
experiments. Therefore, they be used without an explicit human decision and

 be used in unmanaged networks such as home networks.

These names are also for use in documentation examples.

NOT RECOMMENDED

MUST

SHOULD

MUST

SHOULD NOT MUST
NOT

RECOMMENDED

3. Security Considerations
A successful attack on negotiation-enabled nodes would be extremely harmful, as such nodes
might end up with a completely undesirable configuration that would also adversely affect their
peers. GRASP nodes and messages therefore require full protection. As explained in Section 2.5.1,
GRASP run within a secure environment such as the ACP , except for the
constrained instances described in Section 2.5.2.

MUST [RFC8994]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 34

Authentication
A cryptographically authenticated identity for each device is needed in an Autonomic
Network. It is not safe to assume that a large network is physically secured against
interference or that all personnel are trustworthy. Each autonomic node be capable of
proving its identity and authenticating its messages. GRASP relies on a separate, external
certificate-based security mechanism to support authentication, data integrity protection, and
anti-replay protection.

Since GRASP must be deployed in an existing secure environment, the protocol itself specifies
nothing concerning the trust anchor and certification authority. For example, in the ACP

, all nodes can trust each other and the ASAs installed in them.

If GRASP is used temporarily without an external security mechanism, for example, during
system bootstrap (Section 2.5.1), the Session ID (Section 2.7) will act as a nonce to provide
limited protection against the injecting of responses by third parties. A full analysis of the
secure bootstrap process is in .

Authorization and roles
GRASP is agnostic about the roles and capabilities of individual ASAs and about which
objectives a particular ASA is authorized to support. An implementation might support
precautions such as allowing only one ASA in a given node to modify a given objective, but
this may not be appropriate in all cases. For example, it might be operationally useful to allow
an old and a new version of the same ASA to run simultaneously during an overlap period.
These questions are out of scope for the present specification.

Privacy and confidentiality
GRASP is intended for network-management purposes involving network elements, not end
hosts. Therefore, no personal information is expected to be involved in the signaling protocol,
so there should be no direct impact on personal privacy. Nevertheless, applications that do
convey personal information cannot be excluded. Also, traffic flow paths, VPNs, etc., could be
negotiated, which could be of interest for traffic analysis. Operators generally want to conceal
details of their network topology and traffic density from outsiders. Therefore, since insider
attacks cannot be excluded in a large network, the security mechanism for the protocol
provide message confidentiality. This is why Section 2.5.1 requires either an ACP or an
alternative security mechanism.

Link-local multicast security
GRASP has no reasonable alternative to using link-local multicast for Discovery or Flood
Synchronization messages, and these messages are sent in the clear and with no
authentication. They are only sent on interfaces within the Autonomic Network (see Section
2.1 and Section 2.5.1). They are, however, available to on-link eavesdroppers and could be
forged by on-link attackers. In the case of discovery, the Discovery Responses are unicast and
will therefore be protected (Section 2.5.1), and an untrusted forger will not be able to receive
responses. In the case of flood synchronization, an on-link eavesdropper will be able to
receive the flooded objectives, but there is no response message to consider. Some
precautions for Flood Synchronization messages are suggested in Section 2.5.6.2.

MUST

[RFC8994]

[RFC8995]

MUST

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 35

DoS attack protection
GRASP discovery partly relies on insecure link-local multicast. Since routers participating in
GRASP sometimes relay Discovery messages from one link to another, this could be a vector
for denial-of-service attacks. Some mitigations are specified in Section 2.5.4. However,
malicious code installed inside the ACP could always launch DoS attacks consisting of either
spurious Discovery messages or spurious Discovery Responses. It is important that firewalls
prevent any GRASP messages from entering the domain from an unknown source.

Security during bootstrap and discovery
A node cannot trust GRASP traffic from other nodes until the security environment (such as
the ACP) has identified the trust anchor and can authenticate traffic by validating certificates
for other nodes. Also, until it has successfully enrolled , a node cannot assume that
other nodes are able to authenticate its own traffic. Therefore, GRASP discovery during the
bootstrap phase for a new device will inevitably be insecure. Secure synchronization and
negotiation will be impossible until enrollment is complete. Further details are given in
Section 2.5.2.

Security of discovered locators
When GRASP discovery returns an IP address, it be that of a node within the secure
environment (Section 2.5.1). If it returns an FQDN or a URI, the ASA that receives it
assume that the target of the locator is within the secure environment.

[RFC8995]

MUST
MUST NOT

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 36

4. CDDL Specification of GRASP

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 37

<CODE BEGINS> file "grasp.cddl"

grasp-message = (message .within message-structure) / noop-message

message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

MESSAGE_TYPE = 0..255
session-id = 0..4294967295 ; up to 32 bits
grasp-option = any

message /= discovery-message
discovery-message = [M_DISCOVERY, session-id, initiator, objective]

message /= response-message ; response to Discovery
response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective]

message /= synch-message ; response to Synchronization request
synch-message = [M_SYNCH, session-id, objective]

message /= flood-message
flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

message /= request-negotiation-message
request-negotiation-message = [M_REQ_NEG, session-id, objective]

message /= request-synchronization-message
request-synchronization-message = [M_REQ_SYN, session-id, objective]

message /= negotiation-message
negotiation-message = [M_NEGOTIATE, session-id, objective]

message /= end-message
end-message = [M_END, session-id, accept-option / decline-option]

message /= wait-message
wait-message = [M_WAIT, session-id, waiting-time]

message /= invalid-message
invalid-message = [M_INVALID, session-id, ?any]

noop-message = [M_NOOP]

divert-option = [O_DIVERT, +locator-option]

accept-option = [O_ACCEPT]

decline-option = [O_DECLINE, ?reason]
reason = text ; optional UTF-8 error message

waiting-time = 0..4294967295 ; in milliseconds
ttl = 0..4294967295 ; in milliseconds

locator-option /= [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 38

ipv4-address = bytes .size 4

locator-option /= [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
ipv6-address = bytes .size 16

locator-option /= [O_FQDN_LOCATOR, text, transport-proto,
 port-number]

locator-option /= [O_URI_LOCATOR, text,
 transport-proto / null, port-number / null]

transport-proto = IPPROTO_TCP / IPPROTO_UDP
IPPROTO_TCP = 6
IPPROTO_UDP = 17
port-number = 0..65535

initiator = ipv4-address / ipv6-address

objective-flags = uint .bits objective-flag

objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is a dry run
)

objective = [objective-name, objective-flags,
 loop-count, ?objective-value]

objective-name = text ; see section "Format of Objective Options"

objective-value = any

loop-count = 0..255

; Constants for message types and option types

M_NOOP = 0
M_DISCOVERY = 1
M_RESPONSE = 2
M_REQ_NEG = 3
M_REQ_SYN = 4
M_NEGOTIATE = 5
M_END = 6
M_WAIT = 7
M_SYNCH = 8
M_FLOOD = 9
M_INVALID = 99

O_DIVERT = 100
O_ACCEPT = 101
O_DECLINE = 102
O_IPv6_LOCATOR = 103
O_IPv4_LOCATOR = 104
O_FQDN_LOCATOR = 105
O_URI_LOCATOR = 106

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 39

<CODE ENDS>

Address(es):
Description:
Reference:

Address(es):
Description:
Reference:

Service Name:
Port Number:
Transport Protocol:
Description
Assignee:
Contact:
Reference:

5. IANA Considerations
This document defines the GeneRic Autonomic Signaling Protocol (GRASP).

Section 2.6 explains the following link-local multicast addresses that IANA has assigned for use
by GRASP.

Assigned in the "Link-Local Scope Multicast Addresses" subregistry of the "IPv6 Multicast Address
Space Registry":

ff02::13
ALL_GRASP_NEIGHBORS

RFC 8990

Assigned in the "Local Network Control Block (224.0.0.0 - 224.0.0.255 (224.0.0/24))" subregistry of
the "IPv4 Multicast Address Space Registry":

224.0.0.119
ALL_GRASP_NEIGHBORS

RFC 8990

Section 2.6 explains the following User Port (GRASP_LISTEN_PORT), which IANA has assigned for
use by GRASP for both UDP and TCP:

grasp
7017

udp, tcp
GeneRic Autonomic Signaling Protocol

IESG <iesg@ietf.org>
IETF Chair <chair@ietf.org>

RFC 8990

The IANA has created the "GeneRic Autonomic Signaling Protocol (GRASP) Parameters" registry,
which includes two subregistries: "GRASP Messages and Options" and "GRASP Objective Names".

The values in the "GRASP Messages and Options" subregistry are names paired with decimal
integers. Future values be assigned using the Standards Action policy defined by

. The following initial values are assigned by this document:
MUST

[RFC8126]

Value Message/Option

0 M_NOOP

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 40

The values in the "GRASP Objective Names" subregistry are UTF-8 strings that include
a colon (":"), according to Section 2.10.1. Future values be assigned using the Specification
Required policy defined by .

To assist expert review of a new objective, the specification should include a precise description
of the format of the new objective, with sufficient explanation of its semantics to allow
independent implementations. See Section 2.10.3 for more details. If the new objective is similar
in name or purpose to a previously registered objective, the specification should explain why a
new objective is justified.

The following initial values are assigned by this document:

Value Message/Option

1 M_DISCOVERY

2 M_RESPONSE

3 M_REQ_NEG

4 M_REQ_SYN

5 M_NEGOTIATE

6 M_END

7 M_WAIT

8 M_SYNCH

9 M_FLOOD

99 M_INVALID

100 O_DIVERT

101 O_ACCEPT

102 O_DECLINE

103 O_IPv6_LOCATOR

104 O_IPv4_LOCATOR

105 O_FQDN_LOCATOR

106 O_URI_LOCATOR

Table 1: Initial Values of the "GRASP
Messages and Options" Subregistry

MUST NOT
MUST

[RFC8126]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 41

[RFC2119]

[RFC3629]

[RFC3986]

[RFC4086]

[RFC7217]

6. References

6.1. Normative References

, , ,
, , March 1997,
.

, , , ,
, November 2003,

.

, , and ,
, , , , January 2005,

.

, , and ,
, , , , June 2005,

.

,
, ,

, April 2014, .

Objective Name Reference

EX0 RFC 8990

EX1 RFC 8990

EX2 RFC 8990

EX3 RFC 8990

EX4 RFC 8990

EX5 RFC 8990

EX6 RFC 8990

EX7 RFC 8990

EX8 RFC 8990

EX9 RFC 8990

Table 2: Initial Values of the "GRASP
Objective Names" Subregistry

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Gont, F. "A Method for Generating Semantically Opaque Interface Identifiers
with IPv6 Stateless Address Autoconfiguration (SLAAC)" RFC 7217 DOI
10.17487/RFC7217 <https://www.rfc-editor.org/info/rfc7217>

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 42

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc7217

[RFC8085]

[RFC8174]

[RFC8610]

[RFC8949]

[RFC8994]

[ADNCP]

[ASA-GUIDELINES]

[IGCP]

[RFC2205]

[RFC2334]

[RFC2608]

, , and , , ,
, , March 2017,

.

, ,
, , , May 2017,

.

, , and ,

, ,
, June 2019, .

 and , ,
, , , December 2020,

.

, , and ,
, , , May 2021,

.

6.2. Informative References

, ,
, , 5 March 2015,

.

, , , and ,
, ,

, 14 November 2020,
.

, , , , and ,
, ,

, 25 July 2011,
.

, , , , and ,
, ,

, September 1997,
.

, , , and ,
, , , April 1998,

.

, , , and ,
, , , June 1999,

.

Eggert, L. Fairhurst, G. G. Shepherd "UDP Usage Guidelines" BCP 145 RFC
8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/
rfc8085>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Eckert, T., Ed. Behringer, M., Ed. S. Bjarnason "An Autonomic Control Plane
(ACP)" RFC 8994 DOI 10.17487/RFC8994 <https://www.rfc-editor.org/
info/rfc8994>

Stenberg, M. "Autonomic Distributed Node Consensus Protocol" Work in
Progress Internet-Draft, draft-stenberg-anima-adncp-00 <https://
tools.ietf.org/html/draft-stenberg-anima-adncp-00>

Carpenter, B. Ciavaglia, L. Jiang, S. P. Peloso "Guidelines for
Autonomic Service Agents" Work in Progress Internet-Draft, draft-ietf-anima-
asa-guidelines-00 <https://tools.ietf.org/html/draft-ietf-
anima-asa-guidelines-00>

Behringer, M. H. Chaparadza, R. Xin, L. Mahkonen, H. R. Petre "IP based
Generic Control Protocol (IGCP)" Work in Progress Internet-Draft, draft-
chaparadza-intarea-igcp-00 <https://tools.ietf.org/html/draft-
chaparadza-intarea-igcp-00>

Braden, R., Ed. Zhang, L. Berson, S. Herzog, S. S. Jamin "Resource
ReSerVation Protocol (RSVP) -- Version 1 Functional Specification" RFC 2205
DOI 10.17487/RFC2205 <https://www.rfc-editor.org/info/
rfc2205>

Luciani, J. Armitage, G. Halpern, J. N. Doraswamy "Server Cache
Synchronization Protocol (SCSP)" RFC 2334 DOI 10.17487/RFC2334
<https://www.rfc-editor.org/info/rfc2334>

Guttman, E. Perkins, C. Veizades, J. M. Day "Service Location Protocol,
Version 2" RFC 2608 DOI 10.17487/RFC2608 <https://www.rfc-
editor.org/info/rfc2608>

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 43

https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8994
https://www.rfc-editor.org/info/rfc8994
https://tools.ietf.org/html/draft-stenberg-anima-adncp-00
https://tools.ietf.org/html/draft-stenberg-anima-adncp-00
https://tools.ietf.org/html/draft-ietf-anima-asa-guidelines-00
https://tools.ietf.org/html/draft-ietf-anima-asa-guidelines-00
https://tools.ietf.org/html/draft-chaparadza-intarea-igcp-00
https://tools.ietf.org/html/draft-chaparadza-intarea-igcp-00
https://www.rfc-editor.org/info/rfc2205
https://www.rfc-editor.org/info/rfc2205
https://www.rfc-editor.org/info/rfc2334
https://www.rfc-editor.org/info/rfc2608
https://www.rfc-editor.org/info/rfc2608

[RFC2865]

[RFC3416]

[RFC3493]

[RFC4861]

[RFC5612]

[RFC5971]

[RFC6206]

[RFC6241]

[RFC6733]

[RFC6762]

[RFC6763]

[RFC6887]

[RFC7558]

, , , and ,
, , , June 2000,

.

,
, , , ,

December 2002, .

, , , , and ,
, , , February 2003,

.

, , , and ,
, , , September 2007,

.

 and , ,
, , August 2009,

.

 and , ,
, , October 2010,
.

, , , , and , ,
, , March 2011,

.

, , , and ,
, , ,

June 2011, .

, , , and ,
, , , October 2012,

.

 and , , , ,
February 2013, .

 and , , ,
, February 2013, .

, , , , and ,
, , , April 2013,

.

, , , and ,
,

, , July 2015,
.

Rigney, C. Willens, S. Rubens, A. W. Simpson "Remote Authentication Dial
In User Service (RADIUS)" RFC 2865 DOI 10.17487/RFC2865 <https://
www.rfc-editor.org/info/rfc2865>

Presuhn, R., Ed. "Version 2 of the Protocol Operations for the Simple Network
Management Protocol (SNMP)" STD 62 RFC 3416 DOI 10.17487/RFC3416

<https://www.rfc-editor.org/info/rfc3416>

Gilligan, R. Thomson, S. Bound, J. McCann, J. W. Stevens "Basic Socket
Interface Extensions for IPv6" RFC 3493 DOI 10.17487/RFC3493
<https://www.rfc-editor.org/info/rfc3493>

Narten, T. Nordmark, E. Simpson, W. H. Soliman "Neighbor Discovery for
IP version 6 (IPv6)" RFC 4861 DOI 10.17487/RFC4861 <https://
www.rfc-editor.org/info/rfc4861>

Eronen, P. D. Harrington "Enterprise Number for Documentation Use" RFC
5612 DOI 10.17487/RFC5612 <https://www.rfc-editor.org/info/
rfc5612>

Schulzrinne, H. R. Hancock "GIST: General Internet Signalling Transport"
RFC 5971 DOI 10.17487/RFC5971 <https://www.rfc-editor.org/info/
rfc5971>

Levis, P. Clausen, T. Hui, J. Gnawali, O. J. Ko "The Trickle Algorithm" RFC
6206 DOI 10.17487/RFC6206 <https://www.rfc-editor.org/info/
rfc6206>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Fajardo, V., Ed. Arkko, J. Loughney, J. G. Zorn, Ed. "Diameter Base
Protocol" RFC 6733 DOI 10.17487/RFC6733 <https://www.rfc-
editor.org/info/rfc6733>

Cheshire, S. M. Krochmal "Multicast DNS" RFC 6762 DOI 10.17487/RFC6762
<https://www.rfc-editor.org/info/rfc6762>

Cheshire, S. M. Krochmal "DNS-Based Service Discovery" RFC 6763 DOI
10.17487/RFC6763 <https://www.rfc-editor.org/info/rfc6763>

Wing, D., Ed. Cheshire, S. Boucadair, M. Penno, R. P. Selkirk "Port Control
Protocol (PCP)" RFC 6887 DOI 10.17487/RFC6887 <https://www.rfc-
editor.org/info/rfc6887>

Lynn, K. Cheshire, S. Blanchet, M. D. Migault "Requirements for Scalable
DNS-Based Service Discovery (DNS-SD) / Multicast DNS (mDNS) Extensions" RFC
7558 DOI 10.17487/RFC7558 <https://www.rfc-editor.org/info/
rfc7558>

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 44

https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc3416
https://www.rfc-editor.org/info/rfc3493
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc5612
https://www.rfc-editor.org/info/rfc5612
https://www.rfc-editor.org/info/rfc5971
https://www.rfc-editor.org/info/rfc5971
https://www.rfc-editor.org/info/rfc6206
https://www.rfc-editor.org/info/rfc6206
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6733
https://www.rfc-editor.org/info/rfc6733
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc7558
https://www.rfc-editor.org/info/rfc7558

[RFC7575]

[RFC7576]

[RFC7787]

[RFC7788]

[RFC8040]

[RFC8126]

[RFC8264]

[RFC8368]

[RFC8415]

[RFC8991]

[RFC8993]

[RFC8995]

, , , , , , and
, , ,

, June 2015, .

, , and ,
, , , June 2015,

.

 and , , ,
, April 2016, .

, , and , ,
, , April 2016,

.

, , and , , ,
, January 2017, .

, , and ,
, , , , June

2017, .

 and ,
,

, , October 2017,
.

 and ,
,

, , May 2018,
.

, , , , , ,
, and ,
, , , November 2018,

.

, , , and ,
, ,

, May 2021, .

, , , , and ,
, , ,

May 2021, .

, , , , and ,
, ,

, May 2021, .

Behringer, M. Pritikin, M. Bjarnason, S. Clemm, A. Carpenter, B. Jiang, S.
L. Ciavaglia "Autonomic Networking: Definitions and Design Goals" RFC 7575
DOI 10.17487/RFC7575 <https://www.rfc-editor.org/info/rfc7575>

Jiang, S. Carpenter, B. M. Behringer "General Gap Analysis for Autonomic
Networking" RFC 7576 DOI 10.17487/RFC7576 <https://www.rfc-
editor.org/info/rfc7576>

Stenberg, M. S. Barth "Distributed Node Consensus Protocol" RFC 7787 DOI
10.17487/RFC7787 <https://www.rfc-editor.org/info/rfc7787>

Stenberg, M. Barth, S. P. Pfister "Home Networking Control Protocol" RFC
7788 DOI 10.17487/RFC7788 <https://www.rfc-editor.org/info/
rfc7788>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Saint-Andre, P. M. Blanchet "PRECIS Framework: Preparation, Enforcement,
and Comparison of Internationalized Strings in Application Protocols" RFC
8264 DOI 10.17487/RFC8264 <https://www.rfc-editor.org/info/
rfc8264>

Eckert, T., Ed. M. Behringer "Using an Autonomic Control Plane for Stable
Connectivity of Network Operations, Administration, and Maintenance (OAM)"
RFC 8368 DOI 10.17487/RFC8368 <https://www.rfc-editor.org/info/
rfc8368>

Mrugalski, T. Siodelski, M. Volz, B. Yourtchenko, A. Richardson, M. Jiang, S.
Lemon, T. T. Winters "Dynamic Host Configuration Protocol for IPv6
(DHCPv6)" RFC 8415 DOI 10.17487/RFC8415 <https://www.rfc-
editor.org/info/rfc8415>

Carpenter, B. Liu, B., Ed. Wang, W. X. Gong "GeneRic Autonomic Signaling
Protocol Application Program Interface (GRASP API)" RFC 8991 DOI 10.17487/
RFC8991 <https://www.rfc-editor.org/info/rfc8991>

Behringer, M., Ed. Carpenter, B. Eckert, T. Ciavaglia, L. J. Nobre "A
Reference Model for Autonomic Networking" RFC 8993 DOI 10.17487/RFC8993

<https://www.rfc-editor.org/info/rfc8993>

Pritikin, M. Richardson, M. Eckert, T. Behringer, M. K. Watsen
"Bootstrapping Remote Secure Key Infrastructure (BRSKI)" RFC 8995 DOI
10.17487/RFC8995 <https://www.rfc-editor.org/info/rfc8995>

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 45

https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc7576
https://www.rfc-editor.org/info/rfc7576
https://www.rfc-editor.org/info/rfc7787
https://www.rfc-editor.org/info/rfc7788
https://www.rfc-editor.org/info/rfc7788
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8368
https://www.rfc-editor.org/info/rfc8368
https://www.rfc-editor.org/info/rfc8415
https://www.rfc-editor.org/info/rfc8415
https://www.rfc-editor.org/info/rfc8991
https://www.rfc-editor.org/info/rfc8993
https://www.rfc-editor.org/info/rfc8995

Appendix A. Example Message Formats
For readers unfamiliar with CBOR, this appendix shows a number of example GRASP messages
conforming to the CDDL syntax given in Section 4. Each message is shown three times in the
following formats:

CBOR diagnostic notation.
Similar, but showing the names of the constants. (Details of the flag bit encoding are
omitted.)
Hexadecimal version of the CBOR wire format.

Long lines are split for display purposes only.

A.1. Discovery Example
The initiator (2001:db8:f000:baaa:28cc:dc4c:9703:6781) multicasts a Discovery message looking
for objective EX1:

A peer (2001:0db8:f000:baaa:f000:baaa:f000:baaa) responds with a locator:

A.2. Flood Example
The initiator multicasts a Flood Synchronization message. The single objective has a null locator.
There is no response:

1.
2.

3.

[1, 13948744, h'20010db8f000baaa28ccdc4c97036781', ["EX1", 5, 2, 0]]
[M_DISCOVERY, 13948744, h'20010db8f000baaa28ccdc4c97036781',
 ["EX1", F_SYNCH_bits, 2, 0]]
h'84011a00d4d7485020010db8f000baaa28ccdc4c970367818463455831050200'

[2, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [103, h'20010db8f000baaaf000baaaf000baaa', 6, 49443]]
[M_RESPONSE, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [O_IPv6_LOCATOR, h'20010db8f000baaaf000baaaf000baaa',
 IPPROTO_TCP, 49443]]
h'85021a00d4d7485020010db8f000baaa28ccdc4c9703678119ea6084186750
 20010db8f000baaaf000baaaf000baaa0619c123'

[9, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", 5, 2, ["Example 1 value=", 100]],[]]]
[M_FLOOD, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", F_SYNCH_bits, 2, ["Example 1 value=", 100]],[]]]
h'85091a00357b4e5020010db8f000baaa28ccdc4c97036781192710
 828463455831050282704578616d706c6520312076616c75653d186480'

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 46

A.3. Synchronization Example
Following successful discovery of objective EX2, the initiator unicasts a Request Synchronization
message:

The peer responds with a value:

A.4. Simple Negotiation Example
Following successful discovery of objective EX3, the initiator unicasts a Request Negotiation
message:

The peer responds with immediate acceptance. Note that no objective is needed because the
initiator's request was accepted without change:

A.5. Complete Negotiation Example
Again the initiator unicasts a Request Negotiation message:

The responder starts to negotiate (making an offer):

[4, 4038926, ["EX2", 5, 5, 0]]
[M_REQ_SYN, 4038926, ["EX2", F_SYNCH_bits, 5, 0]]
h'83041a003da10e8463455832050500'

[8, 4038926, ["EX2", 5, 5, ["Example 2 value=", 200]]]
[M_SYNCH, 4038926, ["EX2", F_SYNCH_bits, 5, ["Example 2 value=", 200]]]
h'83081a003da10e8463455832050582704578616d706c6520322076616c75653d18c8'

[3, 802813, ["EX3", 3, 6, ["NZD", 47]]]
[M_REQ_NEG, 802813, ["EX3", F_NEG_bits, 6, ["NZD", 47]]]
h'83031a000c3ffd8463455833030682634e5a44182f'

[6, 802813, [101]]
[M_END , 802813, [O_ACCEPT]]
h'83061a000c3ffd811865'

[3, 13767778, ["EX3", 3, 6, ["NZD", 410]]]
[M_REQ_NEG, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 410]]]
h'83031a00d214628463455833030682634e5a4419019a'

[5, 13767778, ["EX3", 3, 6, ["NZD", 80]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 80]]]
h'83051a00d214628463455833030682634e5a441850'

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 47

The initiator continues to negotiate (reducing its request, and note that the loop count is
decremented):

The responder asks for more time:

The responder continues to negotiate (increasing its offer):

The initiator continues to negotiate (reducing its request):

The responder refuses to negotiate further:

This negotiation has failed. If either side had sent [M_END, 13767778, [O_ACCEPT]] it would have
succeeded, converging on the objective value in the preceding M_NEGOTIATE. Note that apart
from the initial M_REQ_NEG, the process is symmetrical.

[5, 13767778, ["EX3", 3, 5, ["NZD", 307]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 5, ["NZD", 307]]]
h'83051a00d214628463455833030582634e5a44190133'

[7, 13767778, 34965]
[M_WAIT, 13767778, 34965]
h'83071a00d21462198895'

[5, 13767778, ["EX3", 3, 4, ["NZD", 120]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 4, ["NZD", 120]]]
h'83051a00d214628463455833030482634e5a441878'

[5, 13767778, ["EX3", 3, 3, ["NZD", 246]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 3, ["NZD", 246]]]
h'83051a00d214628463455833030382634e5a4418f6'

[6, 13767778, [102, "Insufficient funds"]]
[M_END , 13767778, [O_DECLINE, "Insufficient funds"]]
h'83061a00d2146282186672496e73756666696369656e742066756e6473'

Appendix B. Requirement Analysis of Discovery,
Synchronization, and Negotiation
This section discusses the requirements for discovery, negotiation, and synchronization
capabilities. The primary user of the protocol is an Autonomic Service Agent (ASA), so the
requirements are mainly expressed as the features needed by an ASA. A single physical device
might contain several ASAs, and a single ASA might manage several technical objectives. If a
technical objective is managed by several ASAs, any necessary coordination is outside the scope
of GRASP. Furthermore, requirements for ASAs themselves, such as the processing of Intent

, are out of scope for the present document.[RFC7575]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 48

D1.

D2.

D3.

D4.

D5.

D6.

B.1. Requirements for Discovery

ASAs may be designed to manage any type of configurable device or software, as required
in Appendix B.2. A basic requirement is therefore that the protocol can represent and
discover any kind of technical objective (as defined in Section 2.1) among arbitrary subsets
of participating nodes.

In an Autonomic Network, we must assume that when a device starts up, it has no
information about any peer devices, the network structure, or the specific role it must play.
The ASA(s) inside the device are in the same situation. In some cases, when a new
application session starts within a device, the device or ASA may again lack information
about relevant peers. For example, it might be necessary to set up resources on multiple
other devices, coordinated and matched to each other so that there is no wasted resource.
Security settings might also need updating to allow for the new device or user. The
relevant peers may be different for different technical objectives. Therefore discovery
needs to be repeated as often as necessary to find peers capable of acting as counterparts
for each objective that a discovery initiator needs to handle. From this background we
derive the next three requirements:

When an ASA first starts up, it may have no knowledge of the specific network to which it
is attached. Therefore the discovery process must be able to support any network scenario,
assuming only that the device concerned is bootstrapped from factory condition.
When an ASA starts up, it must require no configured location information about any
peers in order to discover them.
If an ASA supports multiple technical objectives, relevant peers may be different for
different discovery objectives, so discovery needs to be performed separately to find
counterparts for each objective. Thus, there must be a mechanism by which an ASA can
separately discover peer ASAs for each of the technical objectives that it needs to manage,
whenever necessary.
Following discovery, an ASA will normally perform negotiation or synchronization for the
corresponding objectives. The design should allow for this by conveniently linking
discovery to negotiation and synchronization. It may provide an optional mechanism to
combine discovery and negotiation/synchronization in a single protocol exchange.
Some objectives may only be significant on the local link, but others may be significant
across the routed network and require off-link operations. Thus, the relevant peers might
be immediate neighbors on the same layer 2 link, or they might be more distant and only
accessible via layer 3. The mechanism must therefore provide both on-link and off-link
discovery of ASAs supporting specific technical objectives.

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 49

D7.

D8.

D9.

The discovery process should be flexible enough to allow for special cases, such as the
following:

During initialization, a device must be able to establish mutual trust with autonomic
nodes elsewhere in the network and participate in an authentication mechanism.
Although this will inevitably start with a discovery action, it is a special case precisely
because trust is not yet established. This topic is the subject of . We require
that once trust has been established for a device, all ASAs within the device inherit the
device's credentials and are also trusted. This does not preclude the device having
multiple credentials.
Depending on the type of network involved, discovery of other central functions might
be needed, such as the Network Operations Center (NOC) . The protocol must
be capable of supporting such discovery during initialization, as well as discovery
during ongoing operation.

The discovery process must not generate excessive traffic and must take account of
sleeping nodes.
There must be a mechanism for handling stale discovery results.

•

[RFC8995]

•
[RFC8368]

SN1.

SN2.

SN3.
SN4.

B.2. Requirements for Synchronization and Negotiation
Capability
Autonomic Networks need to be able to manage many different types of parameters and
consider many dimensions, such as latency, load, unused or limited resources, conflicting
resource requests, security settings, power saving, load balancing, etc. Status information and
resource metrics need to be shared between nodes for dynamic adjustment of resources and for
monitoring purposes. While this might be achieved by existing protocols when they are
available, the new protocol needs to be able to support parameter exchange, including mutual
synchronization, even when no negotiation as such is required. In general, these parameters do
not apply to all participating nodes, but only to a subset.

A basic requirement for the protocol is therefore the ability to represent, discover,
synchronize, and negotiate almost any kind of network parameter among selected subsets
of participating nodes.
Negotiation is an iterative request/response process that must be guaranteed to terminate
(with success or failure). While tie-breaking rules must be defined specifically for each use
case, the protocol should have some general mechanisms in support of loop and deadlock
prevention, such as hop-count limits or timeouts.
Synchronization must be possible for groups of nodes ranging from small to very large.
To avoid "reinventing the wheel", the protocol should be able to encapsulate the data
formats used by existing configuration protocols (such as Network Configuration Protocol
(NETCONF) and YANG) in cases where that is convenient.

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 50

SN5.

SN6.

SN7.

Human intervention in complex situations is costly and error prone. Therefore,
synchronization or negotiation of parameters without human intervention is desirable
whenever the coordination of multiple devices can improve overall network performance.
It follows that the protocol's resource requirements must be small enough to fit in any
device that would otherwise need human intervention. The issue of running in
constrained nodes is discussed in .
Human intervention in large networks is often replaced by use of a top-down network
management system (NMS). It therefore follows that the protocol, as part of the Autonomic
Networking Infrastructure, should be capable of running in any device that would
otherwise be managed by an NMS, and that it can coexist with an NMS and with protocols
such as SNMP and NETCONF.
Specific autonomic features are expected to be implemented by individual ASAs, but the
protocol must be general enough to allow them. Some examples follow:

Dependencies and conflicts: In order to decide upon a configuration for a given device,
the device may need information from neighbors. This can be established through the
negotiation procedure, or through synchronization if that is sufficient. However, a
given item in a neighbor may depend on other information from its own neighbors,
which may need another negotiation or synchronization procedure to obtain or
decide. Therefore, there are potential dependencies and conflicts among negotiation
or synchronization procedures. Resolving dependencies and conflicts is a matter for
the individual ASAs involved. To allow this, there need to be clear boundaries and
convergence mechanisms for negotiations. Also some mechanisms are needed to avoid
loop dependencies or uncontrolled growth in a tree of dependencies. It is the ASA
designer's responsibility to avoid or detect looping dependencies or excessive growth
of dependency trees. The protocol's role is limited to bilateral signaling between ASAs
and the avoidance of loops during bilateral signaling.
Recovery from faults and identification of faulty devices should be as automatic as
possible. The protocol's role is limited to discovery, synchronization, and negotiation.
These processes can occur at any time, and an ASA may need to repeat any of these
steps when the ASA detects an event such as a negotiation counterpart failing.
Since a major goal is to minimize human intervention, it is necessary that the network
can in effect "think ahead" before changing its parameters. One aspect of this is an ASA
that relies on a knowledge base to predict network behavior. This is out of scope for
the signaling protocol. However, another aspect is forecasting the effect of a change by
a "dry run" negotiation before actually installing the change. Signaling a dry run is
therefore a desirable feature of the protocol.

Note that management logging, monitoring, alerts, and tools for intervention are required.
However, these can only be features of individual ASAs, not of the protocol itself. Another
document discusses how such agents may be linked into conventional
Operations, Administration, and Maintenance (OAM) systems via an Autonomic Control
Plane .

[RFC8993]

•

•

•

[RFC8368]

[RFC8994]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 51

T1.

T2.

T3.

T4.

T5.

T6.

T7.

T8.

T9.

B.3. Specific Technical Requirements

It should be convenient for ASA designers to define new technical objectives and for
programmers to express them, without excessive impact on runtime efficiency and
footprint. In particular, it should be convenient for ASAs to be implemented independently
of each other as user-space programs rather than as kernel code, where such a
programming model is possible. The classes of device in which the protocol might run is
discussed in .
The protocol should be easily extensible in case the initially defined discovery,
synchronization, and negotiation mechanisms prove to be insufficient.
To be a generic platform, the protocol payload format should be independent of the
transport protocol or IP version. In particular, it should be able to run over IPv6 or IPv4.
However, some functions, such as multicasting on a link, might need to be IP version
dependent. By default, IPv6 should be preferred.
The protocol must be able to access off-link counterparts via routable addresses, i.e., must
not be restricted to link-local operation.
It must also be possible for an external discovery mechanism to be used, if appropriate for
a given technical objective. In other words, GRASP discovery must not be a prerequisite for
GRASP negotiation or synchronization.
The protocol must be capable of distinguishing multiple simultaneous operations with one
or more peers, especially when wait states occur.
Intent: Although the distribution of Intent is out of scope for this document, the protocol
must not by design exclude its use for Intent distribution.
Management monitoring, alerts, and intervention: Devices should be able to report to a
monitoring system. Some events must be able to generate operator alerts, and some
provision for emergency intervention must be possible (e.g., to freeze synchronization or
negotiation in a misbehaving device). These features might not use the signaling protocol
itself, but its design should not exclude such use.
Because this protocol may directly cause changes to device configurations and have
significant impacts on a running network, all protocol exchanges need to be fully secured
against forged messages and man-in-the-middle attacks, and secured as much as
reasonably possible against denial-of-service attacks. There must also be an encryption
mechanism to resist unwanted monitoring. However, it is not required that the protocol
itself provides these security features; it may depend on an existing secure environment.

SN8. The protocol will be able to deal with a wide variety of technical objectives, covering any
type of network parameter. Therefore the protocol will need a flexible and easily
extensible format for describing objectives. At a later stage, it may be desirable to adopt an
explicit information model. One consideration is whether to adopt an existing information
model or to design a new one.

[RFC8993]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 52

Appendix C. Capability Analysis of Current Protocols
This appendix discusses various existing protocols with properties related to the requirements
described in Appendix B. The purpose is to evaluate whether any existing protocol, or a simple
combination of existing protocols, can meet those requirements.

Numerous protocols include some form of discovery, but these all appear to be very specific in
their applicability. Service Location Protocol (SLP) provides service discovery for
managed networks, but it requires configuration of its own servers. DNS-Based Service Discovery
(DNS-SD) combined with Multicast DNS (mDNS) provides service discovery
for small networks with a single link layer. aims to extend this to larger autonomous
networks, but this is not yet standardized. However, both SLP and DNS-SD appear to target
primarily application-layer services, not the layer 2 and 3 objectives relevant to basic network
configuration. Both SLP and DNS-SD are text-based protocols.

Simple Network Management Protocol (SNMP) uses a command/response model not
well suited for peer negotiation. NETCONF uses an RPC model that does allow positive
or negative responses from the target system, but this is still not adequate for negotiation.

There are various existing protocols that have elementary negotiation abilities, such as Dynamic
Host Configuration Protocol for IPv6 (DHCPv6) , Neighbor Discovery (ND) ,
Port Control Protocol (PCP) , Remote Authentication Dial-In User Service (RADIUS)

, Diameter , etc. Most of them are configuration or management protocols.
However, they either provide only a simple request/response model in a master/slave context or
very limited negotiation abilities.

There are some signaling protocols with an element of negotiation. For example, Resource
ReSerVation Protocol (RSVP) was designed for negotiating quality-of-service
parameters along the path of a unicast or multicast flow. RSVP is a very specialized protocol
aimed at end-to-end flows. A more generic design is General Internet Signalling Transport (GIST)

; however, it tries to solve many problems, making it complex, and is also aimed at per-
flow signaling across many hops rather than at device-to-device signaling. However, we cannot
completely exclude extended RSVP or GIST as a synchronization and negotiation protocol. They
do not appear to be directly usable for peer discovery.

RESTCONF is a protocol intended to convey NETCONF information expressed in the
YANG language via HTTP, including the ability to transit HTML intermediaries. While this is a
powerful approach in the context of centralized configuration of a complex network, it is not
well adapted to efficient interactive negotiation between peer devices, especially simple ones
that might not include YANG processing already.

The Distributed Node Consensus Protocol (DNCP) is defined as a generic form of a
state synchronization protocol, with a proposed usage profile being the Home Networking
Control Protocol (HNCP) for configuring Homenet routers. A specific application of
DNCP for Autonomic Networking was proposed in . According to :

[RFC2608]

[RFC6763] [RFC6762]
[RFC7558]

[RFC3416]
[RFC6241]

[RFC8415] [RFC4861]
[RFC6887]

[RFC2865] [RFC6733]

[RFC2205]

[RFC5971]

[RFC8040]

[RFC7787]

[RFC7788]
[ADNCP] [RFC7787]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 53

DNCP is designed to provide a way for each participating node to publish a set of TLV
(Type-Length-Value) tuples (at most 64 KB) and to provide a shared and common view
about the data published...

DNCP is most suitable for data that changes only infrequently...

If constant rapid state changes are needed, the preferable choice is to use an additional
point-to-point channel...

Specific features of DNCP include:

Every participating node has a unique node identifier.
DNCP messages are encoded as a sequence of TLV objects and sent over unicast UDP or TCP,
with or without (D)TLS security.
Multicast is used only for discovery of DNCP neighbors when lower security is acceptable.
Synchronization of state is maintained by a flooding process using the Trickle algorithm.
There is no bilateral synchronization or negotiation capability.
The HNCP profile of DNCP is designed to operate between directly connected neighbors on a
shared link using UDP and link-local IPv6 addresses.

DNCP does not meet the needs of a general negotiation protocol because it is designed specifically
for flooding synchronization. Also, in its HNCP profile, it is limited to link-local messages and to
IPv6. However, at the minimum, it is a very interesting test case for this style of interaction
between devices without needing a central authority, and it is a proven method of network-wide
state synchronization by flooding.

The Server Cache Synchronization Protocol (SCSP) also describes a method for cache
synchronization and cache replication among a group of nodes.

A proposal was made some years ago for an IP based Generic Control Protocol (IGCP) . This
was aimed at information exchange and negotiation but not directly at peer discovery. However,
it has many points in common with the present work.

None of the above solutions appears to completely meet the needs of generic discovery, state
synchronization, and negotiation in a single solution. Many of the protocols assume that they are
working in a traditional top-down or north-south scenario, rather than a fluid peer-to-peer
scenario. Most of them are specialized in one way or another. As a result, we have not identified
a combination of existing protocols that meets the requirements in Appendix B. Also, we have
not identified a path by which one of the existing protocols could be extended to meet the
requirements.

•
•

•
•

•

[RFC2334]

[IGCP]

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 54

Acknowledgments
A major contribution to the original draft version of this document was made by ,
and significant contributions were made by . Significant early review inputs were
received from , , , and .

 provided important assistance in debugging a prototype implementation.

Valuable comments were received from , ,
, , , , , , ,

, , , , ,
, and participants in the Network Management Research Group, the ANIMA Working

Group, and the IESG.

Sheng Jiang
Toerless Eckert

Joel Halpern Barry Leiba Charles E. Perkins Michael Richardson William
Atwood

Michael Behringer Jéferson Campos Nobre Laurent
Ciavaglia Zongpeng Du Yu Fu Joel Jaeggli Zhenbin Li Dimitri Papadimitriou Pierre Peloso
Reshad Rahman Markus Stenberg Martin Stiemerling Rene Struik Martin Thomson Dacheng
Zhang

Authors' Addresses
Carsten Bormann
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 cabo@tzi.org Email:

Brian Carpenter ()������
School of Computer Science
University of Auckland
PB 92019

 Auckland 1142
New Zealand

 brian.e.carpenter@gmail.com Email:

Bing Liu ()������
Huawei Technologies Co., Ltd
Q14, Huawei Campus
Hai-Dian District
No.156 Beiqing Road
Beijing
100095
China

 leo.liubing@huawei.com Email:

RFC 8990 GRASP May 2021

Bormann, et al. Standards Track Page 55

mailto:cabo@tzi.org
mailto:brian.e.carpenter@gmail.com
mailto:leo.liubing@huawei.com

	RFC 8990
	GeneRic Autonomic Signaling Protocol (GRASP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Protocol Overview
	2.1. Terminology
	2.2. High-Level Deployment Model
	2.3. High-Level Design
	2.4. Quick Operating Overview
	2.5. GRASP Basic Properties and Mechanisms
	2.5.1. Required External Security Mechanism
	2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP
	2.5.3. Transport Layer Usage
	2.5.4. Discovery Mechanism and Procedures
	2.5.4.1. Separated Discovery and Negotiation Mechanisms
	2.5.4.2. Discovery Overview
	2.5.4.3. Discovery Procedures
	2.5.4.4. Discovery Relaying
	2.5.4.5. Rapid Mode (Discovery with Negotiation or Synchronization)

	2.5.5. Negotiation Procedures
	2.5.5.1. Rapid Mode (Discovery/Negotiation Linkage)

	2.5.6. Synchronization and Flooding Procedures
	2.5.6.1. Unicast Synchronization
	2.5.6.2. Flooding
	2.5.6.3. Rapid Mode (Discovery/Synchronization Linkage)

	2.6. GRASP Constants
	2.7. Session Identifier (Session ID)
	2.8. GRASP Messages
	2.8.1. Message Overview
	2.8.2. GRASP Message Format
	2.8.3. Message Size
	2.8.4. Discovery Message
	2.8.5. Discovery Response Message
	2.8.6. Request Messages
	2.8.7. Negotiation Message
	2.8.8. Negotiation End Message
	2.8.9. Confirm Waiting Message
	2.8.10. Synchronization Message
	2.8.11. Flood Synchronization Message
	2.8.12. Invalid Message
	2.8.13. No Operation Message

	2.9. GRASP Options
	2.9.1. Format of GRASP Options
	2.9.2. Divert Option
	2.9.3. Accept Option
	2.9.4. Decline Option
	2.9.5. Locator Options
	2.9.5.1. Locator IPv6 Address Option
	2.9.5.2. Locator IPv4 Address Option
	2.9.5.3. Locator FQDN Option
	2.9.5.4. Locator URI Option

	2.10. Objective Options
	2.10.1. Format of Objective Options
	2.10.2. Objective Flags
	2.10.3. General Considerations for Objective Options
	2.10.4. Organizing of Objective Options
	2.10.5. Experimental and Example Objective Options

	3. Security Considerations
	4. CDDL Specification of GRASP
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Example Message Formats
	A.1. Discovery Example
	A.2. Flood Example
	A.3. Synchronization Example
	A.4. Simple Negotiation Example
	A.5. Complete Negotiation Example
	Appendix B. Requirement Analysis of Discovery, Synchronization, and Negotiation
	B.1. Requirements for Discovery
	B.2. Requirements for Synchronization and Negotiation Capability
	B.3. Specific Technical Requirements
	Appendix C. Capability Analysis of Current Protocols
	Acknowledgments
	Authors' Addresses

 GeneRic Autonomic Signaling Protocol (GRASP)

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 cabo@tzi.org

 School of Computer Science
 University of Auckland
 PB 92019
 Auckland
 1142
 New Zealand

 brian.e.carpenter@gmail.com

 Huawei Technologies Co., Ltd

 No.156 Beiqing Road
 Q14, Huawei Campus
 Hai-Dian District
 Beijing
 100095
 China

 leo.liubing@huawei.com

 Operations and Management
 ANIMA
 autonomic networking
 autonomous operation
 self-management

 This document specifies the GeneRic Autonomic Signaling Protocol (GRASP), which
 enables autonomic nodes and Autonomic Service Agents to dynamically discover peers,
 to synchronize state with each other, and to negotiate parameter settings with each
 other. GRASP depends on an external security environment that is described
 elsewhere. The technical objectives and parameters for specific application scenarios
 are to be described in separate documents. Appendices briefly discuss requirements
 for the protocol and existing protocols with comparable features.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Protocol Overview

 . Terminology

 . High-Level Deployment Model

 . High-Level Design

 . Quick Operating Overview

 . GRASP Basic Properties and Mechanisms

 . Required External Security Mechanism

 . Discovery Unsolicited Link-Local (DULL) GRASP

 . Transport Layer Usage

 . Discovery Mechanism and Procedures

 . Negotiation Procedures

 . Synchronization and Flooding Procedures

 . GRASP Constants

 . Session Identifier (Session ID)

 . GRASP Messages

 . Message Overview

 . GRASP Message Format

 . Message Size

 . Discovery Message

 . Discovery Response Message

 . Request Messages

 . Negotiation Message

 . Negotiation End Message

 . Confirm Waiting Message

 . Synchronization Message

 . Flood Synchronization Message

 . Invalid Message

 . No Operation Message

 . GRASP Options

 . Format of GRASP Options

 . Divert Option

 . Accept Option

 . Decline Option

 . Locator Options

 . Objective Options

 . Format of Objective Options

 . Objective Flags

 . General Considerations for Objective Options

 . Organizing of Objective Options

 . Experimental and Example Objective Options

 . Security Considerations

 . CDDL Specification of GRASP

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Example Message Formats

 . Discovery Example

 . Flood Example

 . Synchronization Example

 . Simple Negotiation Example

 . Complete Negotiation Example

 . Requirement Analysis of Discovery, Synchronization, and Negotiation

 . Requirements for Discovery

 . Requirements for Synchronization and Negotiation Capability

 . Specific Technical Requirements

 . Capability Analysis of Current Protocols

 Acknowledgments

 Authors' Addresses

 Introduction
 The success of the Internet has made IP-based networks bigger and
 more complicated. Large-scale ISP and enterprise networks have become more and more
 problematic for human-based management. Also, operational costs are growing quickly.
 Consequently, there are increased requirements for autonomic behavior in the networks.
 General aspects of Autonomic Networks are discussed in
 and .
 One approach is to largely decentralize the logic of network management by migrating it
 into network elements. A reference model for Autonomic Networking on this basis is given in
 . The reader should consult this document
 to understand how various autonomic components fit together.
 In order to achieve autonomy, devices that embody Autonomic Service Agents
 (ASAs,)
 have specific signaling requirements. In particular, they need to discover each other,
 to synchronize state with each other,
 and to negotiate parameters and resources directly with each other.
 There is no limitation on the types of parameters and resources concerned,
 which can include very basic information needed for addressing and routing,
 as well as anything else that might be configured in a conventional non-autonomic network.
 The atomic unit of discovery, synchronization, or negotiation is referred to as a technical
 objective, i.e., a configurable parameter or set of parameters
 (defined more precisely in).

 Negotiation is an iterative process, requiring multiple message exchanges forming
 a closed loop between the negotiating entities. In fact, these entities are
 ASAs, normally but not necessarily in different network devices.
 State synchronization, when needed,
 can be regarded as a special case of negotiation without iteration.
 Both negotiation and synchronization must logically follow discovery.
 More details of the requirements are found in .
 describes a behavior model for a protocol
 intended to support discovery, synchronization, and negotiation. The
 design of GeneRic Autonomic Signaling Protocol (GRASP) in
 is based on this behavior model. The relevant capabilities
 of various existing protocols are reviewed in .
 The proposed discovery mechanism is oriented towards synchronization and
 negotiation objectives. It is based on a neighbor discovery process on the
 local link, but it also supports diversion to peers on other links.
 There is no assumption of any particular form of network topology.
 When a device starts up with no preconfiguration,
 it has no knowledge of the topology. The protocol itself is capable of
 being used in a small and/or flat network structure such as a small
 office or home network as well as in a large, professionally managed network.
 Therefore, the discovery mechanism needs to be able to allow a device
 to bootstrap itself without making any prior assumptions about network
 structure.
 Because GRASP can be used as part of a decision process among distributed
 devices or between networks, it must run in a secure and strongly authenticated
 environment.

 In realistic deployments, not all devices will
 support GRASP. Therefore, some Autonomic Service Agents will directly
 manage a group of non-autonomic nodes, and other non-autonomic nodes
 will be managed traditionally. Such mixed scenarios
 are not discussed in this specification.

 Protocol Overview

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 This document uses terminology defined in .
 The following additional terms are used throughout this document:

 Discovery:

 A process by which an ASA discovers peers according to a specific
discovery objective. The discovery results may be different according to the
different discovery objectives. The discovered peers may later be used as
negotiation counterparts or as sources of synchronization data.

 Negotiation:

 A process by which two ASAs interact iteratively to agree on parameter
settings that best satisfy the objectives of both ASAs.

 State Synchronization:

 A process by which ASAs interact to receive the current state of parameter
values stored in other ASAs. This is a special case of negotiation in which
information is sent, but the ASAs do not request their peers to change
parameter settings. All other definitions apply to both negotiation and synchronization.

 Technical Objective (usually abbreviated as Objective):

 A technical objective is a data structure whose main contents are a name
and a value. The value consists of a single configurable parameter or a set of
parameters of some kind. The exact format of an objective is defined in . An objective occurs in three contexts:
discovery, negotiation, and synchronization. Normally, a given objective will
not occur in negotiation and synchronization contexts simultaneously.

 One ASA may support multiple independent objectives.

The parameter(s) in the value of a given objective apply to a specific
service or function or action. They may in principle be anything that can be
set to a specific logical, numerical, or string value, or a more complex data
structure, by a network node. Each node is expected to contain one or more
ASAs which may each manage subsidiary non-autonomic nodes.

 Discovery Objective:

 an objective in the process of discovery. Its value may be undefined.

 Synchronization Objective:

 an objective whose specific technical content needs to be synchronized
among two or more ASAs. Thus, each ASA will maintain its own copy of the
objective.

 Negotiation Objective:

 an objective whose specific technical content needs to be decided in
coordination with another ASA. Again, each ASA will maintain its own copy of
the objective.

 A detailed discussion of objectives, including their format, is found in
 .

 Discovery Initiator:

 An ASA that starts discovery by sending a Discovery message referring to a
specific discovery objective.

 Discovery Responder:

 A peer that either contains an ASA supporting the discovery objective
indicated by the discovery initiator or caches the locator(s) of the ASA(s)
supporting the objective. It sends a Discovery Response, as described later.

 Synchronization Initiator:

 An ASA that starts synchronization by sending a request message referring
to a specific synchronization objective.

 Synchronization Responder:

 A peer ASA that responds with the value of a synchronization objective.

 Negotiation Initiator:

 An ASA that starts negotiation by sending a request message referring to a
specific negotiation objective.

 Negotiation Counterpart:

 A peer with which the negotiation initiator negotiates a specific
negotiation objective.

 GRASP Instance:

 This refers to an instantiation of a GRASP protocol engine, likely
including multiple threads or processes as well as dynamic data structures
such as a discovery cache, running in a given security environment on a single
device.

 GRASP Core:

 This refers to the code and shared data structures of a GRASP instance,
which will communicate with individual ASAs via a suitable Application
Programming Interface (API).

 Interface or GRASP Interface:

 Unless otherwise stated, this refers to a network interface, which might
be physical or virtual, that a specific instance of GRASP is currently
using. A device might have other interfaces that are not used by GRASP and
which are outside the scope of the Autonomic Network.

 High-Level Deployment Model
 A GRASP implementation will be part of the Autonomic Networking Infrastructure (ANI)
 in an autonomic node, which must also provide an appropriate security environment.
 In accordance with , this SHOULD be the
 Autonomic Control Plane (ACP) .
 As a result, all autonomic nodes in the ACP are able to trust each other.
 It is expected that GRASP will access the ACP by using a typical socket programming interface,
 and the ACP will make available only network interfaces within the Autonomic Network.
 If there is no ACP, the considerations described in apply.

 There will also be one or more Autonomic Service Agents (ASAs). In the minimal case
 of a single-purpose device, these components might be fully integrated with GRASP
 and the ACP. A more common model is expected to be a multipurpose device capable of containing
 several ASAs, such as a router or large switch. In this case it is expected that the ACP, GRASP and the ASAs will
 be implemented as separate processes, which are able to support
 asynchronous and simultaneous operations, for example by multithreading.
 In some scenarios, a limited negotiation model might be deployed based on a limited
 trust relationship such as that between two administrative domains. ASAs might then
 exchange limited information and negotiate some particular configurations.
 GRASP is explicitly designed to operate within a single addressing realm.
 Its discovery and flooding mechanisms do not support autonomic operations that
 cross any form of address translator or upper-layer proxy.
 A suitable Application Programming Interface (API) will be needed
 between GRASP and the ASAs. In some implementations, ASAs would run in user
 space with a GRASP library providing the API, and this library would in turn
 communicate via system calls with core GRASP functions.
 Details of the API are out of scope for the present document.
 For further details of possible deployment models, see
 .

 An instance of GRASP must be aware of the network interfaces it will use, and of the
 appropriate global-scope
 and link-local addresses. In the presence of the ACP, such information will be available from
 the adjacency table discussed in .
 In other cases, GRASP must determine such information for itself. Details depend on the
 device and operating system. In the rest of this document, the terms 'interfaces'
 or 'GRASP interfaces'
 refers only to the set of network interfaces that a specific instance
 of GRASP is currently using.
 Because GRASP needs to work with very high reliability, especially during bootstrapping
 and during fault conditions, it is essential that every implementation continues to
 operate in adverse conditions. For example, discovery failures, or any kind of socket
 exception at any time, must not cause irrecoverable failures in GRASP itself, and must
 return suitable error codes through the API so that ASAs can also recover.

 GRASP must not depend upon nonvolatile data storage. All runtime error
 conditions, and events such as address renumbering, network interface failures,
 and CPU sleep/wake cycles, must be handled in such a way that GRASP will still
 operate correctly and securely afterwards ().
 An autonomic node will normally run a single instance of GRASP, which is used by multiple ASAs.
 Possible exceptions are mentioned below.

 High-Level Design
 This section describes the behavior model and general design of
 GRASP, supporting discovery, synchronization, and negotiation, to
 act as a platform for different technical objectives.

 A generic platform:

 The protocol design is generic and independent of the synchronization or
negotiation contents. The technical contents will vary according to the
various technical objectives and the different pairs of counterparts.

 Multiple instances:

Normally, a single main instance of the GRASP protocol engine will exist
in an autonomic node, and each ASA will run as an independent asynchronous
process. However, scenarios where multiple instances of GRASP run in a single
node, perhaps with different security properties, are possible (). In this case, each instance
 MUST listen independently for GRASP link-local multicasts, and
all instances MUST be woken by each such multicast in order
for discovery and flooding to work correctly.

 Security infrastructure:

 As noted above, the protocol itself has no built-in security
functionality and relies on a separate secure infrastructure.

 Discovery, synchronization, and negotiation are designed together:

 The discovery method and the synchronization and negotiation methods are
designed in the same way and can be combined when this is useful, allowing a
rapid mode of operation described in . These processes can also be performed independently when
appropriate.

Thus, for some objectives, especially those concerned with application-layer
services, another discovery mechanism such as DNS-based Service Discovery
 MAY be used. The
choice is left to the designers of individual ASAs.

 A uniform pattern for technical objectives:

The synchronization and negotiation objectives are defined according to a
uniform pattern. The values that they contain could be carried either in a
simple binary format or in a complex object format. The basic protocol design
uses the Concise Binary Object Representation (CBOR) , which is readily extensible for unknown, future
requirements.

 A flexible model for synchronization:

 GRASP supports synchronization between two nodes, which could be used
repeatedly to perform synchronization among a small number of nodes. It also
supports an unsolicited flooding mode when large groups of nodes, possibly
including all autonomic nodes, need data for the same technical objective.

There may be some network parameters for which a more traditional flooding
mechanism such as the Distributed Node Consensus Protocol (DNCP) is considered
more appropriate. GRASP can coexist with DNCP.

 A simple initiator/responder model for negotiation:

 Multiparty negotiations are very complicated to model and cannot readily
be guaranteed to converge. GRASP uses a simple bilateral model and can support
multiparty negotiations by indirect steps.

 Organizing of synchronization or negotiation content:

 The technical content transmitted by GRASP will be organized according to
the relevant function or service. The objectives for different functions or
services are kept separate because they may be negotiated or synchronized
with different counterparts or have different response times. Thus a normal
arrangement is a single ASA managing a small set of closely related
objectives, with a version of that ASA in each relevant autonomic
node. Further discussion of this aspect is out of scope for the current
document.

 Requests and responses in negotiation procedures:

The initiator can negotiate a specific negotiation objective with relevant
counterpart ASAs. It can request relevant information from a counterpart so
that it can coordinate its local configuration. It can request the counterpart
to make a matching configuration. It can request simulation or forecast
results by sending some dry-run conditions.

Beyond the traditional yes/no answer, the responder can reply with a suggested
alternative value for the objective concerned. This would start a
bidirectional negotiation ending in a compromise between the two ASAs.

 Convergence of negotiation procedures:

 To enable convergence when a responder suggests a new value or condition
in a negotiation step reply, it should be as close as possible to the original
request or previous suggestion. The suggested value of later negotiation steps
should be chosen between the suggested values from the previous two
steps. GRASP provides mechanisms to guarantee convergence (or failure) in a
small number of steps, namely a timeout and a maximum number of iterations.

 Extensibility:

 GRASP intentionally does not have a version number, and it can be extended by
adding new message types and options. The Invalid message (M_INVALID) will be
used to signal that an implementation does not recognize a message or option
sent by another implementation. In normal use, new semantics will be added by
defining new synchronization or negotiation objectives.

 Quick Operating Overview
 An instance of GRASP is expected to run as a separate core module,
 providing an API (such as) to interface to
 various ASAs.
 These ASAs may operate without special privilege, unless they need it for
 other reasons (such as configuring IP addresses or manipulating routing
 tables).

 The GRASP mechanisms used by the ASA are built around GRASP objectives
 defined as data structures
 containing administrative information such as the objective's unique
 name and its current value. The format and size of the value is
 not restricted by the protocol, except that it must be possible to
 serialize it for transmission in CBOR, which is no
 restriction at all in practice.

 GRASP provides the following mechanisms:

 A discovery mechanism (M_DISCOVERY, M_RESPONSE) by which an ASA can
 discover other ASAs supporting a given objective.

 A negotiation request mechanism (M_REQ_NEG) by which an ASA can start
 negotiation of an objective with a counterpart ASA. Once a negotiation has
 started, the process is symmetrical, and there is a negotiation step message
 (M_NEGOTIATE) for each ASA to use in turn. Two other functions support negotiating
 steps (M_WAIT, M_END).

 A synchronization mechanism (M_REQ_SYN) by which an ASA can request the
 current value of an objective from a counterpart ASA. With this,
 there is a corresponding response function (M_SYNCH) for an ASA that
 wishes to respond to synchronization requests.

 A flood mechanism (M_FLOOD) by which an ASA can cause the current value of
 an objective to be flooded throughout the Autonomic Network so that any ASA can
 receive it. One application of this is to act as an announcement, avoiding the need for
 discovery of a widely applicable objective.

 Some example messages and simple message flows are provided in .

 GRASP Basic Properties and Mechanisms

 Required External Security Mechanism
 GRASP does not specify transport security because it is meant to
 be adapted to different environments. Every solution adopting GRASP
 MUST specify a security and transport substrate used by GRASP in
 that solution.
 The substrate MUST enforce sending and receiving GRASP messages
 only between members of a mutually trusted group running GRASP. Each
 group member is an instance of GRASP. The group members are nodes of
 a connected graph. The group and graph are created by the security
 and transport substrate and are called the GRASP domain. The substrate
 must support unicast messages between any group members and
 (link-local) multicast messages between adjacent group members. It
 must deny messages between group members and non-group members. With
 this model, security is provided by enforcing group membership, but
 any member of the trusted group can attack the entire network until
 revoked.
 Substrates MUST use cryptographic member authentication and
 message integrity for GRASP messages. This can be end to end or
 hop by hop across the domain. The security and transport substrate
 MUST provide mechanisms to remove untrusted members from the
 group.
 If the substrate does not mandate and enforce GRASP message
 encryption, then any service using GRASP in such a solution MUST
 provide protection and encryption for message elements whose
 exposure could constitute an attack vector.
 The security and transport substrate for GRASP in the ANI is the
 ACP. Unless otherwise noted, we assume this security and transport
 substrate in the remainder of this document. The ACP does mandate
 the use of encryption; therefore, GRASP in the ANI can rely on GRASP
 messages being encrypted. The GRASP domain is the ACP: all nodes in
 an autonomic domain connected by encrypted virtual links formed by
 the ACP. The ACP uses hop-by-hop security
 (authentication and encryption) of messages. Removal of nodes relies on
 standard PKI certificate revocation or expiry of sufficiently short-lived
 certificates. Refer to
 for more details.
 As mentioned in , some GRASP operations might be
 performed across an administrative domain boundary by mutual agreement, without the
 benefit of an ACP. Such operations
 MUST be confined to a separate instance of GRASP with its own copy of all GRASP
 data structures running across a separate GRASP domain with a security and transport substrate.
 In the most simple case, each point-to-point interdomain GRASP peering could be a
 separate domain, and the security and transport substrate could be built using transport or network-layer
 security protocols. This is subject to future specifications.
 An exception to the requirements for the security and transport substrate exists
 for highly constrained subsets of GRASP meant to support the establishment of a security and transport substrate,
 described in the following section.

 Discovery Unsolicited Link-Local (DULL) GRASP
 Some services may need to use insecure GRASP discovery, response,
 and flood messages without being able to use preexisting security
 associations, for example, as part of discovery for establishing
 security associations such as a security substrate for GRASP.
 Such operations being intrinsically insecure, they need to be confined to link-local
 use to minimize the risk of malicious actions. Possible examples
 include discovery of candidate ACP neighbors
 , discovery of bootstrap
 proxies , or perhaps
 initialization services in networks using GRASP without being fully autonomic
 (e.g., no ACP).
 Such usage MUST be limited to link-local operations on a single interface and MUST be confined
 to a separate insecure instance of GRASP with its own copy of all GRASP
 data structures. This instance is nicknamed DULL -- Discovery Unsolicited Link-Local.
 The detailed rules for the DULL instance of GRASP are as follows:

 An initiator MAY send Discovery or Flood Synchronization link-local
 multicast messages that MUST have a loop count of 1, to prevent
 off-link operations.
 Other unsolicited GRASP message types MUST NOT be sent.
 A responder MUST silently discard any message whose loop count is not 1.
 A responder MUST silently discard any message referring to a GRASP objective that is
 not directly part of a service that requires this insecure mode.
 A responder MUST NOT relay any multicast messages.
 A Discovery Response MUST indicate a link-local address.
 A Discovery Response MUST NOT include a Divert option.
 A node MUST silently discard any message whose source address is not link-local.

 To minimize traffic possibly observed by third parties,
 GRASP traffic SHOULD be minimized by using only Flood Synchronization
 to announce objectives and their associated locators, rather than by using Discovery
 and Discovery Response messages. Further details are out of scope for this document.

 Transport Layer Usage
 All GRASP messages, after they are serialized as a CBOR byte string, are transmitted
 as such directly over the transport protocol in use. The transport protocol(s) for a GRASP
 domain are specified by the security and transport substrate as introduced in .
 GRASP discovery and flooding messages are designed for GRASP domain-wide flooding
 through hop-by-hop link-local multicast forwarding between adjacent GRASP nodes. The
 GRASP security and transport substrate needs to specify how these link-local multicasts
 are transported. This can be unreliable transport (UDP) but it SHOULD be reliable
 transport (e.g., TCP).
 If the substrate specifies an unreliable transport such as UDP for discovery and flooding messages,
 then it MUST NOT use IP fragmentation because of its loss characteristic, especially
 in multi-hop flooding. GRASP MUST then enforce at the user API level a limit to the size
 of discovery and flooding messages, so that no fragmentation can occur. For IPv6 transport, this
 means that the size of those messages' IPv6 packets must be at most 1280 bytes (unless there is a known
 larger minimum link MTU across the whole GRASP domain).
 All other GRASP messages are unicast between group members of the GRASP domain. These
 MUST use a reliable transport protocol because GRASP itself does not provide for error detection,
 retransmission, or flow control. Unless otherwise specified by the security and transport
 substrate, TCP MUST be used.
 The security and transport substrate for GRASP in the ANI is the ACP. Unless otherwise noted,
 we assume this security and transport substrate in the remainder of this document when describing
 GRASP's message transport. In the ACP, TCP is used for GRASP unicast messages. GRASP discovery and
 flooding messages also use TCP: these link-local messages are forwarded by replicating them to
 all adjacent GRASP nodes on the link via TCP connections to those adjacent GRASP nodes. Because
 of this, GRASP in the ANI has no limitations on the size of discovery and flooding messages with
 respect to fragmentation issues. While the ACP is being built using a DULL instance of GRASP,
 native UDP multicast is used to discover ACP/GRASP neighbors on links.
 For link-local UDP multicast, GRASP listens to the well-known
 GRASP Listen Port (). Transport connections for discovery
 and flooding on relay nodes must terminate in GRASP instances (e.g., GRASP ASAs) so
 that link-local multicast, hop-by-hop flooding of M_DISCOVERY and M_FLOOD messages and hop-by-hop forwarding
 of M_RESPONSE responses and caching of those responses along the path work correctly.
 Unicast transport connections used for synchronization and negotiation can terminate
 directly in ASAs that implement objectives; therefore, this traffic does not need to
 pass through GRASP instances. For this, the ASA listens on its own dynamically assigned ports,
 which are communicated to its peers during discovery. Alternatively, the GRASP instance
 can also terminate the unicast transport connections and pass the traffic from/to the
 ASA if that is preferable in some implementations (e.g., to better decouple ASAs from
 network connections).

 Discovery Mechanism and Procedures

 Separated Discovery and Negotiation Mechanisms
 Although discovery and negotiation or synchronization are defined
 together in GRASP, they are separate mechanisms. The discovery
 process could run independently from the negotiation or synchronization
 process. Upon receiving a Discovery message (),
 the
 recipient node should return a Discovery Response message in which it either
 indicates itself as a discovery responder or diverts the
 initiator towards another more suitable ASA. However, this
 response may be delayed if the recipient needs to relay
 the Discovery message onward, as described in .
 The discovery action (M_DISCOVERY) will normally be followed by
 a negotiation (M_REQ_NEG) or synchronization (M_REQ_SYN) action. The
 discovery results could be utilized by the negotiation
 protocol to decide which ASA the initiator will negotiate
 with.
 The initiator of a discovery action for a given objective need not
 be capable of responding to that objective as a negotiation counterpart, as a
 synchronization responder, or as source for flooding. For example, an ASA might perform
 discovery even if it only wishes to act as a synchronization initiator or negotiation initiator.
 Such an ASA does not itself need to respond to Discovery messages.
 It is also entirely possible to use GRASP discovery without any subsequent
 negotiation or synchronization action. In this case, the discovered objective
 is simply used as a name during the discovery process, and any subsequent
 operations between the peers are outside the scope of GRASP.

 Discovery Overview
 A complete discovery process will start with a multicast Discovery message (M_DISCOVERY) on the
 local link. On-link neighbors supporting the discovery objective will
 respond directly with Discovery Response (M_RESPONSE) messages. A neighbor with multiple interfaces may respond
 with a cached Discovery Response. If it has no cached response, it will relay the
 Discovery message on its other GRASP interfaces.
 If a node receiving the relayed Discovery message
 supports the discovery objective, it will respond to the relayed Discovery message.
 If it has a cached response, it will respond with that.
 If not, it will repeat the discovery process, which thereby becomes iterative.
 The loop count and timeout will ensure that the process ends. Further details
 are given in .

 A Discovery message MAY be sent unicast to a peer node,
 which SHOULD then proceed exactly as if the message had been multicast,
 except that when TCP is used, the response will be
 on the same socket as the query. However,
 this mode does not guarantee successful discovery in the general case.

 Discovery Procedures
 Discovery starts as an on-link operation. The Divert option
 can tell the discovery initiator to contact an off-link
 ASA for that discovery objective. If the security and transport substrate
 of the GRASP domain (see) uses UDP link-local multicast,
 then the discovery initiator sends these to the ALL_GRASP_NEIGHBORS link-local
 multicast address (), and all GRASP nodes need
 to listen to this address to act as discovery responders.
 Because this port
 is unique in a device, this is a function of the GRASP instance
 and not of an individual ASA. As a result, each ASA will need to
 register the objectives that it supports with the local GRASP instance.
 If an ASA in a neighbor device supports the requested discovery objective,
 the device SHOULD respond to the link-local multicast with a unicast Discovery Response
 message () with locator option(s) () unless it is
 temporarily unavailable. Otherwise, if the neighbor has cached information
 about an ASA that supports the requested discovery objective (usually
 because it discovered the same objective before), it SHOULD
 respond with a Discovery Response message with a Divert option pointing
 to the appropriate discovery responder. However, it SHOULD NOT respond
 with a cached response on an interface if it learned that information from
 the same interface because the peer in question will answer directly if still
 operational.
 If a device has no information about the requested discovery objective
 and is not acting as a discovery relay (see), it MUST silently
 discard the Discovery message.
 The discovery initiator MUST set a reasonable timeout on the
 discovery process. A suggested value is 100 milliseconds multiplied by the loop count
 embedded in the objective.
 If no Discovery Response is received within the timeout,
 the Discovery message MAY be repeated with a newly generated
 Session ID (). An exponential backoff SHOULD be used
 for subsequent repetitions to limit the load during busy periods. The
 details of the backoff algorithm will depend on the use case for the
 objective concerned but MUST be consistent with the recommendations
 in for low data-volume multicast.
 Frequent repetition might be symptomatic of a denial-of-service attack.
 After a GRASP device successfully discovers a locator for a discovery responder
 supporting a specific objective, it SHOULD cache this information, including the interface
 index via which it was discovered. This cache record MAY be used for future
 negotiation or synchronization, and the locator SHOULD be passed on when appropriate
 as a Divert option to another discovery initiator.
 The cache mechanism MUST include a lifetime for each entry. The
 lifetime is derived from a time-to-live (ttl) parameter in each
 Discovery Response message.
 Cached entries MUST be ignored or deleted after their lifetime expires.
 In some environments, unplanned address renumbering might occur.
 In such cases, the lifetime SHOULD be short compared to
 the typical address lifetime. The discovery mechanism
 needs to track the node's current address to ensure that Discovery
 Responses always indicate the correct address.
 If multiple discovery responders are found for the same objective, they
 SHOULD all be cached unless this creates a resource shortage. The method
 of choosing between multiple responders is an implementation choice.
 This choice MUST be available to each ASA, but the GRASP implementation
 SHOULD provide a default choice.
 Because discovery responders will be cached in a finite cache, they might
 be deleted at any time. In this case, discovery will need to be repeated. If an
 ASA exits for any reason, its locator might still be cached for some time,
 and attempts to connect to it will fail. ASAs need to be robust in these
 circumstances.

 Discovery Relaying
 A GRASP instance with multiple link-layer interfaces (typically
 running in a router) MUST support discovery on all
 GRASP interfaces. We refer to this as a 'relaying instance'.
 DULL instances () are
 always single-interface instances and therefore MUST NOT perform discovery relaying.
 If a relaying instance receives a Discovery message on a given
 interface for a specific objective that it does not support and
 for which it has not previously cached a discovery responder, it
 MUST relay the query by reissuing a new Discovery
 message as a link-local multicast on its other GRASP
 interfaces.
 The relayed Discovery message MUST have the
 same Session ID and 'initiator' field as the incoming message (see). The IP
 address in the 'initiator' field is only used to disambiguate the
 Session ID and is never used to address Response packets.
 Response packets are sent back to the relaying instance, not the
 original initiator.
 The M_DISCOVERY message does not encode the transport address
 of the originator or relay. Response packets must therefore be
 sent to the transport-layer address of the connection on which the
 M_DISCOVERY message was received. If the M_DISCOVERY was relayed
 via a reliable hop-by-hop transport connection, the response is
 simply sent back via the same connection.
 If the M_DISCOVERY was relayed via link-local (e.g., UDP)
 multicast, the response is sent back via a reliable hop-by-hop
 transport connection with the same port number as the source port
 of the link-local multicast. Therefore, if link-local multicast is
 used and M_RESPONSE messages are required (which is the case in
 almost all GRASP instances except for the limited use of DULL
 instances in the ANI), GRASP needs to be able to bind to one port
 number on UDP from which to originate the link-local multicast
 M_DISCOVERY messages and the same port number on the reliable
 hop-by-hop transport (e.g., TCP by default) to be able to respond to
 transport connections from responders that want to send M_RESPONSE
 messages back. Note that this port does not need to be the
 GRASP_LISTEN_PORT.
 The relaying instance MUST decrement the loop
 count within the objective, and MUST NOT relay the
 Discovery message if the result is zero. Also, it
 MUST limit the total rate at which it relays
 Discovery messages to a reasonable value in order to mitigate
 possible denial-of-service attacks. For example, the rate limit
 could be set to a small multiple of the observed rate of Discovery
 messages during normal operation. The relaying instance
 MUST cache the Session ID value and initiator
 address of each relayed Discovery message until any Discovery
 Responses have arrived or the discovery process has timed out. To
 prevent loops, it MUST NOT relay a Discovery
 message that carries a given cached Session ID and initiator
 address more than once. These precautions avoid discovery loops
 and mitigate potential overload.
 Since the relay device is unaware of the timeout set by the original
 initiator, it SHOULD set a suitable timeout for the relayed Discovery message.
 A suggested value is 100 milliseconds multiplied by the remaining loop count.
 The discovery results received by the relaying instance MUST in turn be
 sent as a Discovery Response message to the Discovery message that caused
 the relay action.

 Rapid Mode (Discovery with Negotiation or Synchronization)
 A Discovery message MAY include an
 objective option. This allows a rapid mode of negotiation
 () or
 synchronization ().
 Rapid mode is currently limited to a single objective
 for simplicity of design and implementation. A possible future extension
 is to allow multiple objectives in rapid mode for greater efficiency.

 Negotiation Procedures
 A negotiation initiator opens a transport connection to a
 counterpart ASA using the address, protocol, and port obtained during discovery.
 It then sends a negotiation request (using M_REQ_NEG) to the counterpart,
 including a specific negotiation objective. It may request the negotiation
 counterpart to make a specific configuration. Alternatively, it may
 request a certain simulation or forecast result by sending a dry-run configuration.
 The details, including the distinction between a dry run and a live
 configuration change, will be defined separately for each type of negotiation
 objective. Any state associated with a dry-run operation,
 such as temporarily reserving a resource for subsequent use in a live
 run, is entirely a matter for the designer of the ASA concerned.
 Each negotiation session as a whole is subject to a timeout
 (default GRASP_DEF_TIMEOUT milliseconds,),
 initialized when the request is sent (see).
 If no reply message of any kind is received within the timeout,
 the negotiation request MAY be repeated with a newly generated
 Session ID (). An exponential backoff SHOULD be used
 for subsequent repetitions. The
 details of the backoff algorithm will depend on the use case for the
 objective concerned.
 If the counterpart can immediately apply the requested
 configuration, it will give an immediate positive (O_ACCEPT) answer using the Negotiation End (M_END) message.
 This will end the negotiation phase immediately. Otherwise, it will
 negotiate (using M_NEGOTIATE). It will reply with a proposed alternative configuration
 that it can apply (typically, a configuration that uses fewer resources
 than requested by the negotiation initiator). This will start a
 bidirectional negotiation using the Negotiate (M_NEGOTIATE) message to reach a compromise between the two ASAs.
 The negotiation procedure is ended when one of the negotiation
 peers sends a Negotiation End (M_END) message, which contains an Accept (O_ACCEPT)
 or Decline (O_DECLINE) option and does not need a response from the negotiation
 peer. Negotiation may also end in failure (equivalent to a decline)
 if a timeout is exceeded or a loop count is exceeded. When the procedure
 ends for whatever reason, the transport connection SHOULD be closed.
 A transport session failure is treated as a negotiation failure.
 A negotiation procedure concerns one objective and one
 counterpart. Both the initiator and the counterpart may take part in
 simultaneous negotiations with various other ASAs or in
 simultaneous negotiations about different objectives. Thus, GRASP is
 expected to be used in a multithreaded mode or its logical equivalent. Certain negotiation
 objectives may have restrictions on multithreading, for example to
 avoid over-allocating resources.
 Some configuration actions, for example, wavelength switching
 in optical networks, might take considerable time to execute. The ASA
 concerned needs to allow for this by design, but GRASP does allow for
 a peer to insert latency in a negotiation process if necessary
 (, M_WAIT).

 Rapid Mode (Discovery/Negotiation Linkage)
 A Discovery message MAY include a Negotiation
 Objective option. In this case, it is as if the initiator sent the sequence
 M_DISCOVERY immediately followed by M_REQ_NEG.
 This has implications for the construction of the GRASP core, as it must carefully
 pass the contents of the Negotiation Objective option to the ASA so that it
 may evaluate the objective directly. When a Negotiation Objective option is
 present, the ASA replies with an M_NEGOTIATE message (or M_END with O_ACCEPT if it is
 immediately satisfied with the proposal) rather than with an M_RESPONSE.
 However, if the recipient node does not support rapid mode, discovery will
 continue normally.
 It is possible that a Discovery Response will arrive from a responder that
 does not support rapid mode before such a Negotiation message arrives.
 In this case, rapid mode will not occur.
 This rapid mode could reduce the interactions between
 nodes so that a higher efficiency could be achieved. However, a network in which some
 nodes support rapid mode and others do not will have complex timing-dependent behaviors.
 Therefore, the rapid negotiation function SHOULD be disabled by default.

 Synchronization and Flooding Procedures

 Unicast Synchronization
 A synchronization initiator opens a transport connection to a
 counterpart ASA using the address, protocol, and port obtained during discovery.
 It then sends a Request Synchronization message (M_REQ_SYN,) to the
 counterpart, including a specific synchronization objective.
 The counterpart responds with a Synchronization message (M_SYNCH,)
 containing the current value of the requested synchronization
 objective. No further messages are needed, and the transport
 connection SHOULD be closed. A transport session failure is treated
 as a synchronization failure.
 If no reply message of any kind is received within a given timeout
 (default GRASP_DEF_TIMEOUT milliseconds,),
 the synchronization request MAY be repeated with a newly generated
 Session ID (). An exponential backoff SHOULD be used
 for subsequent repetitions. The
 details of the backoff algorithm will depend on the use case for the
 objective concerned.

 Flooding
 In the case just described, the message exchange is unicast and
 concerns only one synchronization objective. For large groups of nodes
 requiring the same data, synchronization flooding is available. For this,
 a flooding initiator MAY send an unsolicited Flood Synchronization message () containing
 one or more Synchronization Objective option(s), if and only if the specification
 of those objectives permits it. This is sent as a multicast message to the
 ALL_GRASP_NEIGHBORS multicast address ().
 Receiving flood multicasts is a function of the GRASP core,
 as in the case of discovery multicasts ().
 To ensure that flooding does not result in a loop, the originator of the Flood Synchronization message
 MUST set the loop count in the objectives to a suitable value (the default is GRASP_DEF_LOOPCT).
 Also, a suitable mechanism is needed
 to avoid excessive multicast traffic. This mechanism MUST be defined as part of the
 specification of the synchronization objective(s) concerned. It might be a simple rate
 limit or a more complex mechanism such as the Trickle algorithm .
 A GRASP device with multiple link-layer interfaces (typically a router) MUST
 support synchronization flooding on all GRASP interfaces. If it receives a multicast
 Flood Synchronization message on a given interface, it MUST relay
 it by reissuing a Flood Synchronization message as a link-local multicast
 on its other GRASP interfaces.
 The relayed message MUST have the same Session ID as the incoming
 message and MUST be tagged with the IP address of its original initiator.
 Link-layer flooding is supported by GRASP by setting the loop count to 1
 and sending with a link-local source address. Floods with link-local source addresses
 and a loop count other than 1 are invalid, and such messages MUST be discarded.
 The relaying device MUST decrement the loop count within the first objective and
 MUST NOT relay the Flood Synchronization message if the result is zero.
 Also, it MUST limit the total rate at which it relays Flood Synchronization messages
 to a reasonable value, in order to mitigate possible denial-of-service attacks.
 For example, the rate limit could be set to a small multiple of the observed
 rate of flood messages during normal operation.
 The relaying device MUST cache the Session ID value and initiator address of each relayed
 Flood Synchronization message for a time not less than twice GRASP_DEF_TIMEOUT milliseconds.
 To prevent loops, it MUST NOT relay a Flood Synchronization message
 that carries a given cached Session ID and initiator address more than once.
 These precautions avoid synchronization loops and mitigate potential overload.
 Note that this mechanism is unreliable in the case of sleeping nodes,
 or new nodes that join the network, or nodes that rejoin the network
 after a fault. An ASA that initiates a flood SHOULD repeat the flood
 at a suitable frequency, which MUST be consistent with the recommendations
 in for low data-volume multicast.
 The ASA SHOULD also act as a synchronization responder for
 the objective(s) concerned. Thus nodes that require an objective subject to
 flooding can either wait for the next flood or request unicast synchronization
 for that objective.
 The multicast messages for synchronization flooding are subject to the security
 rules in . In practice, this means that they MUST NOT be transmitted
 and MUST be ignored on receipt unless there is an operational ACP or equivalent strong
 security in place. However, because
 of the security weakness of link-local multicast (),
 synchronization objectives that are flooded SHOULD NOT contain unencrypted private
 information and SHOULD be validated by the recipient ASA.

 Rapid Mode (Discovery/Synchronization Linkage)
 A Discovery message MAY include a Synchronization
 Objective option. In this case, the Discovery message also acts
 as a Request Synchronization message to indicate to the discovery responder
 that it could directly reply to the discovery initiator with
 a Synchronization message () with synchronization data for rapid processing,
 if the discovery target supports the corresponding synchronization
 objective. The design implications are similar to those discussed in .
 It is possible that a Discovery Response will arrive from a responder that
 does not support rapid mode before such a Synchronization message arrives.
 In this case, rapid mode will not occur.
 This rapid mode could reduce the interactions between
 nodes so that a higher efficiency could be achieved. However, a network in which some
 nodes support rapid mode and others do not will have complex timing-dependent behaviors.
 Therefore, the rapid synchronization function SHOULD be configured off by default
 and MAY be configured on or off by Intent.

 GRASP Constants

 ALL_GRASP_NEIGHBORS

 A link-local scope multicast address used by a GRASP-enabled device to
discover GRASP-enabled neighbor (i.e., on-link) devices. All devices that
support GRASP are members of this multicast group.

 IPv6 multicast address: ff02::13
 IPv4 multicast address: 224.0.0.119

 GRASP_LISTEN_PORT (7017)

 A well-known UDP user port that every GRASP-enabled network device
 MUST listen to for link-local multicasts when UDP is used for
M_DISCOVERY or M_FLOOD messages in the GRASP instance. This user port
 MAY also be used to listen for TCP or UDP unicast messages in a
simple implementation of GRASP ().

 GRASP_DEF_TIMEOUT (60000 milliseconds)

 The default timeout used to determine that an operation has failed to complete.

 GRASP_DEF_LOOPCT (6)

 The default loop count used to determine that a negotiation has failed
to complete and to avoid looping messages.

 GRASP_DEF_MAX_SIZE (2048)

 The default maximum message size in bytes.

 Session Identifier (Session ID)
 This is an up to 32-bit opaque value used to distinguish multiple sessions between
 the same two devices. A new Session ID MUST be generated by the initiator for every
 new Discovery, Flood Synchronization, or Request message. All responses and follow-up messages in the same
 discovery, synchronization, or negotiation procedure MUST carry the same Session ID.
 The Session ID SHOULD have a very low collision rate locally. It
 MUST be generated by a pseudorandom number generator (PRNG) using a locally
 generated seed that is unlikely to be used by any other device in the same
 network. The PRNG SHOULD be cryptographically strong .
 When allocating a new Session ID, GRASP MUST
 check that the value is not already in use and SHOULD check that it has not been
 used recently by consulting a cache of current and recent sessions. In the unlikely
 event of a clash, GRASP MUST generate a new value.
 However, there is a finite probability that two nodes might generate the same
 Session ID value. For that reason, when a Session ID is communicated via GRASP, the
 receiving node MUST tag it with the initiator's IP address to allow disambiguation.
 In the highly unlikely event of two peers opening sessions with the same
 Session ID value, this tag will allow the two sessions to be distinguished.
 Multicast GRASP messages and their responses, which may be relayed between links,
 therefore include a field that carries the initiator's global IP address.
 There is a highly unlikely race condition in which two peers start simultaneous negotiation
 sessions with each other using the same Session ID value. Depending on various
 implementation choices, this might lead to the two sessions being confused.
 See for details of how to avoid this.

 GRASP Messages

 Message Overview
 This section defines the GRASP message format and message types.
 Message types not listed here are reserved for future use.
 The messages currently defined are:

 Discovery and Discovery Response (M_DISCOVERY, M_RESPONSE).
 Request Negotiation, Negotiation, Confirm Waiting, and Negotiation End (M_REQ_NEG, M_NEGOTIATE, M_WAIT, M_END).
 Request Synchronization, Synchronization, and Flood Synchronization (M_REQ_SYN, M_SYNCH, M_FLOOD).
 No Operation and Invalid (M_NOOP, M_INVALID).

 GRASP Message Format
 GRASP messages share an identical header format and a
 variable format area for options. GRASP message headers and options
 are transmitted in Concise Binary Object Representation (CBOR)
 . In this specification, they are described
 using Concise Data Definition Language (CDDL)
 .
 Fragmentary CDDL is used to describe each item in this section. A complete and normative
 CDDL specification of GRASP is given in , including constants such
 as message types.

 Every GRASP message, except the No Operation message, carries a Session ID ().
 Options are then presented serially.
 In fragmentary CDDL, every GRASP message follows the pattern:

 grasp-message = (message .within message-structure) / noop-message

 message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

 MESSAGE_TYPE = 0..255
 session-id = 0..4294967295 ; up to 32 bits
 grasp-option = any

 The MESSAGE_TYPE indicates the type of the message and thus defines
 the expected options. Any options received that are not consistent with
 the MESSAGE_TYPE SHOULD be silently discarded.
 The No Operation (noop) message is described in .
 The various MESSAGE_TYPE values are defined in .
 All other message elements are described below and formally defined in .
 If an unrecognized MESSAGE_TYPE is received in a unicast message,
 an Invalid message () MAY be returned. Otherwise, the message
 MAY be logged and MUST be discarded. If an unrecognized MESSAGE_TYPE is received
 in a multicast message, it MAY be logged and MUST be silently discarded.

 Message Size
 GRASP nodes MUST be able to receive unicast messages of at least GRASP_DEF_MAX_SIZE bytes. GRASP nodes
 MUST NOT send unicast messages longer than GRASP_DEF_MAX_SIZE bytes unless a longer size is explicitly
 allowed for the objective concerned. For example, GRASP negotiation itself could be used
 to agree on a longer message size.
 The message parser used by GRASP should be configured to know about the GRASP_DEF_MAX_SIZE, or
 any larger negotiated message size, so that it may defend against overly long messages.
 The maximum size of multicast messages (M_DISCOVERY and M_FLOOD) depends on the link-layer
technology or the link-adaptation layer in use.

 Discovery Message
 In fragmentary CDDL, a Discovery message follows the pattern:

 discovery-message = [M_DISCOVERY, session-id, initiator, objective]

 A discovery initiator sends a Discovery message
 to initiate a discovery process for a particular objective option.

 The discovery initiator sends all Discovery
 messages via UDP to port GRASP_LISTEN_PORT at the link-local
 ALL_GRASP_NEIGHBORS multicast address on each link-layer interface in use by GRASP.
 It then listens for unicast TCP responses on a given port and stores the discovery
 results, including responding discovery objectives and
 corresponding unicast locators.

 The listening port used for TCP MUST be the same port as used for sending the
 Discovery UDP multicast, on a given interface. In an implementation with a
 single GRASP instance in a node, this MAY be GRASP_LISTEN_PORT. To support
 multiple instances in the same node, the GRASP discovery mechanism in each
 instance needs to find, for each interface, a dynamic port that it can bind to
 for both sending UDP link-local multicast and listening for TCP before
 initiating any discovery.

 The 'initiator' field in the message is a globally unique IP address of the
 initiator for the sole purpose of disambiguating the Session ID
 in other nodes. If for some reason the initiator does not
 have a globally unique IP address, it MUST use a link-local
 address that is highly likely to be
 unique for this purpose, for example, using . Determination
 of a node's globally unique IP address is implementation dependent.

 A Discovery message MUST include exactly one of the following:

 A Discovery Objective option ().
 Its loop count MUST be set to a suitable value to prevent discovery
 loops (default value is GRASP_DEF_LOOPCT). If the discovery initiator
 requires only on-link responses, the loop count MUST be set to 1.

 A Negotiation Objective option (). This
 is used both for the purpose of discovery and to indicate
 to the discovery target that it MAY directly reply to
 the discovery initiator with a Negotiation message for
 rapid processing, if it could act as the corresponding negotiation counterpart.
 The sender of such a Discovery message MUST initialize
 a negotiation timer and loop count in the same way as a Request Negotiation message
 ().

 A Synchronization Objective option ().
 This is used both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiator with a Synchronization message
 for rapid processing, if it could act as the corresponding synchronization counterpart.
 Its loop count MUST be set to a suitable value to prevent discovery
 loops (default value is GRASP_DEF_LOOPCT).

 As mentioned in , a Discovery message MAY be sent unicast to a peer node,
 which SHOULD then proceed exactly as if the message had been multicast.

 Discovery Response Message
 In fragmentary CDDL, a Discovery Response message follows the pattern:

 response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective]

 ttl = 0..4294967295 ; in milliseconds

 A node that receives a Discovery message SHOULD send a
 Discovery Response message if and only if it can respond to the discovery.

 It MUST contain the same Session ID and initiator as the Discovery message.

 It MUST contain a time-to-live (ttl) for the validity of the response, given
 as a positive integer value in milliseconds. Zero implies a value significantly
 greater than GRASP_DEF_TIMEOUT milliseconds (). A suggested
 value is ten times that amount.

 It MAY include a copy of the discovery objective from
 the Discovery message.

 It is sent to the sender of the Discovery message via TCP
 at the port used to send the Discovery message (as explained in).
 In the case of a relayed Discovery message, the Discovery Response
 is thus sent to the relay, not the original initiator.

 In all cases, the transport session SHOULD be closed after sending the Discovery Response.
 A transport session failure is treated as no response.

 If the responding node supports the discovery objective
 of the discovery, it MUST include at least one kind of
 locator option () to indicate its own
 location. A sequence of multiple kinds of locator
 options (e.g., IP address option and FQDN option) is also
 valid.

 If the responding node itself does not support the discovery
 objective, but it knows the locator of the discovery
 objective, then it SHOULD respond to the Discovery message with a
 Divert option () embedding a locator
 option or a combination of multiple kinds of locator
 options that indicate the locator(s) of the discovery objective.

 More details on the processing of Discovery Responses are given in
 .

 Request Messages
 In fragmentary CDDL, Request Negotiation and Request Synchronization messages follow the patterns:

request-negotiation-message = [M_REQ_NEG, session-id, objective]

request-synchronization-message = [M_REQ_SYN, session-id, objective]

 A negotiation or synchronization requesting node
 sends the appropriate Request message to the unicast address of the negotiation or
 synchronization counterpart, using the appropriate protocol and port numbers
 (selected from the discovery result). If the discovery result is an FQDN,
 it will be resolved first.
 A Request message MUST include the relevant objective option. In the case of
 Request Negotiation, the objective option MUST include the requested value.
 When an initiator sends a Request Negotiation message, it MUST initialize a negotiation timer
 for the new negotiation thread. The default is GRASP_DEF_TIMEOUT milliseconds. Unless this
 timeout is modified by a Confirm Waiting message (),
 the initiator will consider that the negotiation has failed when the timer expires.
 Similarly, when an initiator sends a Request Synchronization, it SHOULD initialize
 a synchronization timer. The default is GRASP_DEF_TIMEOUT milliseconds.
 The initiator will consider that synchronization has failed
 if there is no response before the timer expires.
 When an initiator sends a Request message, it MUST initialize the loop count
 of the objective option with a value defined in the specification of the option
 or, if no such value is specified, with GRASP_DEF_LOOPCT.
 If a node receives a Request message for an objective for which no ASA is currently
 listening, it MUST immediately close the relevant socket to indicate this to the initiator.
 This is to avoid unnecessary timeouts if, for example, an ASA exits prematurely
 but the GRASP core is listening on its behalf.
 To avoid the highly unlikely race condition in which two nodes simultaneously request
 sessions with each other using the same Session ID (),
 a node MUST verify that the received Session ID is not already locally active
 when it receives a Request message. In case of a clash,
 it MUST discard the Request message, in which case the initiator will detect a timeout.

 Negotiation Message
 In fragmentary CDDL, a Negotiation message follows the pattern:

 negotiation-message = [M_NEGOTIATE, session-id, objective]

 A negotiation counterpart sends a Negotiation message in response
 to a Request Negotiation message, a Negotiation message, or a
 Discovery message in rapid mode. A negotiation process
 MAY include multiple steps.
 The Negotiation message MUST include the relevant
 Negotiation Objective option, with its value updated according to
 progress in the negotiation. The sender MUST
 decrement the loop count by 1. If the loop count becomes zero, the
 message MUST NOT be sent. In this case, the
 negotiation session has failed and will time out.

 Negotiation End Message
 In fragmentary CDDL, a Negotiation End message follows the
 pattern:

 end-message = [M_END, session-id, accept-option / decline-option]

 A negotiation counterpart sends a Negotiation End message to close
 the negotiation. It MUST contain either an Accept option or
 a Decline option, defined in and . It could be sent either by the requesting node
 or the responding node.

 Confirm Waiting Message
 In fragmentary CDDL, a Confirm Waiting message follows the pattern:

 wait-message = [M_WAIT, session-id, waiting-time]
 waiting-time = 0..4294967295 ; in milliseconds

 A responding node sends a Confirm Waiting message to
 ask the requesting node to wait for a further
 negotiation response. It might be that the local
 process needs more time or that the negotiation
 depends on another triggered negotiation. This
 message MUST NOT include any other options.
 When received, the waiting time value overwrites
 and restarts the current negotiation timer
 ().
 The responding node SHOULD send a Negotiation, Negotiation End, or another
 Confirm Waiting message before the negotiation timer expires. If
 not, when the initiator's timer expires, the initiator MUST treat
 the negotiation procedure as failed.

 Synchronization Message
 In fragmentary CDDL, a Synchronization message follows the pattern:

 synch-message = [M_SYNCH, session-id, objective]

 A node that receives a Request Synchronization, or
 a Discovery message in rapid mode, sends back a unicast Synchronization
 message with the synchronization data, in the form of a GRASP option for the specific
 synchronization objective present in the Request Synchronization.

 Flood Synchronization Message
 In fragmentary CDDL, a Flood Synchronization message follows the pattern:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 ttl = 0..4294967295 ; in milliseconds

 A node MAY initiate flooding by sending an
 unsolicited Flood Synchronization message with synchronization
 data. This MAY be sent to port GRASP_LISTEN_PORT at
 the link-local ALL_GRASP_NEIGHBORS multicast address, in accordance
 with the rules in .

 The initiator address is provided, as described for Discovery messages (),
 only to disambiguate the Session ID.

 The message MUST contain a time-to-live (ttl) for the validity of the contents, given
 as a positive integer value in milliseconds. There is no default;
 zero indicates an indefinite lifetime.

 The synchronization data are in the form of GRASP option(s) for specific
 synchronization objective(s). The loop count(s) MUST be set to a suitable
 value to prevent flood loops (default value is GRASP_DEF_LOOPCT).

 Each objective option MAY be followed by a locator option () associated with
 the flooded objective. In its absence, an empty option MUST be included
 to indicate a null locator.

 A node that receives a Flood Synchronization message
 MUST cache the received objectives for use by local
 ASAs. Each cached objective MUST be tagged with the
 locator option sent with it, or with a null tag if an empty locator
 option was sent. If a subsequent Flood Synchronization message
 carries an objective with the same name and the same tag, the
 corresponding cached copy of the objective MUST be
 overwritten. If a subsequent Flood Synchronization message carrying
 an objective with same name arrives with a different tag, a new
 cached entry MUST be created.
 Note: the purpose of this mechanism is to allow the recipient of
 flooded values to distinguish between different senders of the same
 objective, and if necessary communicate with them using the locator,
 protocol, and port included in the locator option. Many objectives
 will not need this mechanism, so they will be flooded with a null
 locator.
 Cached entries MUST be ignored or deleted after
 their lifetime expires.

 Invalid Message
 In fragmentary CDDL, an Invalid message follows the pattern:

 invalid-message = [M_INVALID, session-id, ?any]

 This message MAY be sent by an implementation in
 response to an incoming unicast message that it considers
 invalid. The Session ID value MUST be copied from the
 incoming message. The content SHOULD be diagnostic
 information such as a partial copy of the invalid message up to the
 maximum message size. An M_INVALID message MAY be
 silently ignored by a recipient. However, it could be used in
 support of extensibility, since it indicates that the remote node
 does not support a new or obsolete message or option.
 An M_INVALID message MUST NOT be sent in response to an M_INVALID message.

 No Operation Message
 In fragmentary CDDL, a No Operation message follows the pattern:

 noop-message = [M_NOOP]

 This message MAY be sent by an implementation that for practical reasons needs to
 initialize a socket. It MUST be silently ignored by a recipient.

 GRASP Options
 This section defines the GRASP options for the negotiation
 and synchronization protocol signaling. Additional
 options may be defined in the future.

 Format of GRASP Options
 GRASP options SHOULD be CBOR arrays that MUST start with an unsigned
 integer identifying the specific option type carried in this option.
 These option types are formally defined in .
 GRASP options may be defined to include encapsulated GRASP options.

 Divert Option
 The Divert option is used to redirect a GRASP request to another
 node, which may be more appropriate for the intended negotiation or synchronization. It
 may redirect to an entity that is known as a specific negotiation or synchronization
 counterpart (on-link or off-link) or a default gateway. The Divert
 option MUST only be encapsulated in Discovery Response messages.
 If found elsewhere, it SHOULD be silently ignored.
 A discovery initiator MAY ignore a Divert option if it only requires direct
 Discovery Responses.
 In fragmentary CDDL, the Divert option follows the pattern:

 divert-option = [O_DIVERT, +locator-option]

 The embedded locator option(s) ()
 point to diverted destination target(s) in response to a Discovery message.

 Accept Option
 The Accept option is used to indicate to the negotiation counterpart
 that the proposed negotiation content is accepted.
 The Accept option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.
 In fragmentary CDDL, the Accept option follows the pattern:

 accept-option = [O_ACCEPT]

 Decline Option
 The Decline option is used to indicate to the negotiation
 counterpart the proposed negotiation content is declined and to end the
 negotiation process.
 The Decline option MUST only be encapsulated in
 Negotiation End messages. If found elsewhere, it SHOULD be
 silently ignored.
 In fragmentary CDDL, the Decline option follows the pattern:

 decline-option = [O_DECLINE, ?reason]
 reason = text ; optional UTF-8 error message

 Note: there might be scenarios where an ASA wants
 to decline the proposed value and restart the negotiation process.
 In this case, it is an implementation choice whether to send a Decline
 option or to continue with a Negotiation message, with an objective
 option that contains a null value or one that contains a new
 value that might achieve convergence.

 Locator Options
 These locator options are used to present reachability information for an ASA,
 a device, or an interface. They are Locator IPv6 Address
 option, Locator IPv4 Address option, Locator FQDN
 option, and Locator URI option.
 Since ASAs will normally run as independent user programs, locator options need
 to indicate the network-layer locator plus the transport protocol and port number for
 reaching the target. For this reason, the locator options for IP addresses
 and FQDNs include this information explicitly. In the case of the Locator URI option,
 this information can be encoded in the URI itself.
 Note: It is assumed that all locators used in locator options are in scope throughout
 the GRASP domain. As stated in ,
 GRASP is not intended to work across disjoint addressing
 or naming realms.

 Locator IPv6 Address Option
 In fragmentary CDDL, the Locator IPv6 Address option follows the pattern:

 ipv6-locator-option = [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = bytes .size 16

 transport-proto = IPPROTO_TCP / IPPROTO_UDP
 IPPROTO_TCP = 6
 IPPROTO_UDP = 17
 port-number = 0..65535

 The content of this option is a binary IPv6 address followed by
 the protocol number and port number to be used.
 Note 1: The IPv6 address MUST normally have
 global scope. However, during initialization, a link-local address
 MAY be used for specific objectives only (). In this case, the
 corresponding Discovery Response message MUST be
 sent via the interface to which the link-local address
 applies.
 Note 2: A link-local IPv6 address MUST NOT be
 used when this option is included in a Divert option.
 Note 3: The IPPROTO values are taken from the existing IANA
 Protocol Numbers registry in order to specify TCP or UDP. If GRASP
 requires future values that are not in that registry, a new
 registry for values outside the range 0..255 will be needed.

 Locator IPv4 Address Option
 In fragmentary CDDL, the Locator IPv4 Address option follows the pattern:

 ipv4-locator-option = [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
 ipv4-address = bytes .size 4

 The content of this option is a binary IPv4 address followed by
 the protocol number and port number to be used.
 Note: If an operator has internal network address translation for IPv4,
 this option MUST NOT be used within the Divert option.

 Locator FQDN Option
 In fragmentary CDDL, the Locator FQDN option follows the pattern:

 fqdn-locator-option = [O_FQDN_LOCATOR, text,
 transport-proto, port-number]

 The content of this option is the FQDN
 of the target followed by the protocol number and port number to
 be used.

 Note 1: Any FQDN that might not be valid throughout the
 network in question, such as a Multicast DNS name , MUST NOT be
 used when this option is used within the Divert option.
 Note 2: Normal GRASP operations are not expected to use this option. It is intended for
 special purposes such as discovering external services.

 Locator URI Option
 In fragmentary CDDL, the Locator URI option follows the pattern:

 uri-locator-option = [O_URI_LOCATOR, text,
 transport-proto / null, port-number / null]

 The content of this option is the URI of the target
 followed by the protocol number and port number to be used (or by null values if not required)
 .

 Note 1: Any URI which might not be valid throughout the network in question,
 such as one based on a Multicast DNS name , MUST NOT be used when
 this option is used within the Divert option.
 Note 2: Normal GRASP operations are not expected to use this option. It is intended for
 special purposes such as discovering external services. Therefore, its use is not further
 described in this specification.

 Objective Options

 Format of Objective Options
 An objective option is used to identify objectives for
 the purposes of discovery, negotiation, or synchronization.
 All objectives MUST be in the following format,
 described in fragmentary CDDL:

objective = [objective-name, objective-flags,
 loop-count, ?objective-value]

objective-name = text
objective-value = any
loop-count = 0..255

 All objectives are identified by a unique name that is a UTF-8
 string , to be compared
 byte by byte.
 The names of generic objectives MUST NOT include a colon (":")
 and MUST be registered with IANA ().
 The names of privately defined objectives MUST include at least one colon (":").
 The string preceding the last colon in the name MUST be globally unique and in some
 way identify the entity or person defining the objective. The following three methods
 MAY be used to create such a globally unique string:

 The unique string is a decimal number representing a registered 32-bit Private Enterprise
 Number (PEN) that uniquely identifies the enterprise
 defining the objective.
 The unique string is a FQDN that uniquely identifies the entity or person
 defining the objective.
 The unique string is an email address that uniquely identifies the entity or person
 defining the objective.

 GRASP treats the objective name as an opaque string. For example, "EX1", "32473:EX1",
 "example.com:EX1", "example.org:EX1", and "user@example.org:EX1" are five different objectives.
 The 'objective-flags' field is described in .
 The 'loop-count' field is used for terminating negotiation as described in
 . It is also used for terminating discovery as
 described in and for terminating flooding as described in
 . It is placed in the objective rather than in the GRASP
 message format because, as far as the ASA is concerned, it is a property of the
 objective itself.

 The 'objective-value' field expresses the actual value of a negotiation
 or synchronization objective. Its format is defined in the
 specification of the objective and may be a simple value
 or a data structure of any kind, as long as it can be represented in CBOR.
 It is optional only in a Discovery or Discovery Response message.

 Objective Flags
 An objective may be relevant for discovery only, for discovery and negotiation, or
 for discovery and synchronization. This is expressed in the objective by logical flag bits:

 objective-flags = uint .bits objective-flag
 objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is a dry run
)

 These bits are independent and may be combined appropriately, e.g., (F_DISC and F_SYNCH) or
 (F_DISC and F_NEG) or (F_DISC and F_NEG and F_NEG_DRY).
 Note that for a given negotiation session, an objective must be used either for negotiation or for
 dry-run negotiation. Mixing the two modes in a single negotiation is not possible.

 General Considerations for Objective Options
 As mentioned above, objective options MUST be assigned a unique name.
 As long as privately defined objective options obey the rules above, this document
 does not restrict their choice of name, but the entity or person concerned SHOULD publish the names in use.
 Names are expressed as UTF-8 strings for convenience in designing objective options for
 localized use. For generic usage, names expressed in the ASCII subset of UTF-8 are RECOMMENDED.
 Designers planning to use non-ASCII names are strongly advised to consult
 or its successor
 to understand the complexities involved. Since GRASP compares names byte by byte,
 all issues of Unicode profiling and canonicalization MUST be specified in the design of the
 objective option.
 All objective options MUST respect the CBOR patterns defined above as "objective"
 and MUST replace the 'any' field with a valid CBOR data definition
 for the relevant use case and application.
 An objective option that contains no additional
 fields beyond its 'loop-count' can only be a discovery objective and MUST only be used
 in Discovery and Discovery Response messages.
 The Negotiation Objective options contain negotiation objectives,
 which vary according to different functions and/or services. They MUST
 be carried by Discovery, Request Negotiation, or Negotiation messages only. The negotiation
 initiator MUST set the initial 'loop-count' to a value specified in the
 specification of the objective or, if no such value is specified, to
 GRASP_DEF_LOOPCT.
 For most scenarios, there should be initial values in the
 negotiation requests. Consequently, the Negotiation Objective options MUST
 always be completely presented in a Request Negotiation message, or in a Discovery
 message in rapid mode. If there is no
 initial value, the 'value' field SHOULD be set to the 'null' value defined
 by CBOR.
 Synchronization Objective options are similar, but MUST be carried
 by Discovery, Discovery Response, Request Synchronization, or Flood Synchronization
 messages only. They include
 'value' fields only in Synchronization or Flood Synchronization messages.
 The design of an objective interacts in various ways with the design of the ASAs
 that will use it. ASA design considerations are discussed in
 .

 Organizing of Objective Options
 Generic objective options MUST be specified in documents
 available to the public and SHOULD be designed to use either
 the negotiation or the synchronization mechanism described above.

 As noted earlier, one negotiation objective is handled by each
 GRASP negotiation thread. Therefore, a negotiation objective, which is
 based on a specific function or action, SHOULD be organized as a single
 GRASP option. It is NOT RECOMMENDED to organize multiple negotiation
 objectives into a single option nor to split a single function
 or action into multiple negotiation objectives.
 It is important to understand that GRASP negotiation does not
 support transactional integrity. If transactional integrity is needed for
 a specific objective, this must be ensured by the ASA. For example, an ASA
 might need to ensure that it only participates in one negotiation thread
 at the same time. Such an ASA would need to stop listening for incoming
 negotiation requests before generating an outgoing negotiation request.
 A synchronization objective SHOULD be organized as a single GRASP option.
 Some objectives will support more than one operational mode.
 An example is a negotiation objective with both a dry-run mode
 (where the negotiation is to determine whether the other end can, in fact,
 make the requested change without problems) and a live mode, as explained
 in . The semantics of such
 modes will be defined in the specification of the objectives. These
 objectives SHOULD include flags indicating the
 applicable mode(s).
 An issue requiring particular attention is that GRASP itself is
 not a transactionally safe protocol. Any state associated with a dry-run operation,
 such as temporarily reserving a resource for subsequent use in a live
 run, is entirely a matter for the designer of the ASA concerned.
 As indicated in , an objective's value may
 include multiple parameters. Parameters
 might be categorized into two classes: the obligatory ones presented as
 fixed fields and the optional ones presented in
 some other form of data structure embedded in CBOR. The format might be
 inherited from an existing management or configuration protocol, with
 the objective option acting as a carrier for that format.
 The data structure might be defined in a formal language, but that is a
 matter for the specifications of individual objectives.
 There are many candidates, according to the context, such as ABNF, RBNF,
 XML Schema, YANG, etc. GRASP itself is agnostic on
 these questions. The only restriction is that the format can be mapped
 into CBOR.
 It is NOT RECOMMENDED to mix parameters that have significantly
 different response-time characteristics in a single objective. Separate
 objectives are more suitable for such a scenario.
 All objectives MUST support GRASP discovery. However, as mentioned
 in , it is acceptable for an ASA to use an alternative method
 of discovery.
 Normally, a GRASP objective will refer to specific technical parameters
 as explained in . However, it is acceptable to define
 an abstract objective for the purpose of managing or coordinating ASAs.
 It is also acceptable to define a special-purpose objective for purposes
 such as trust bootstrapping or formation of the ACP.

 To guarantee convergence, a limited number of rounds or a timeout is needed
 for each negotiation objective.
 Therefore, the definition of each negotiation objective SHOULD clearly specify
 this, for example, a default loop count and timeout,
 so that the negotiation can always be terminated properly. If not,
 the GRASP defaults will apply.

 There must be a well-defined procedure for concluding that a negotiation cannot
 succeed, and if so, deciding what happens next (e.g., deadlock
 resolution, tie-breaking, or reversion to best-effort
 service). This MUST be specified for individual negotiation objectives.

 Experimental and Example Objective Options
 The names "EX0" through "EX9" have been reserved for experimental options.
 Multiple names have been assigned because a single experiment
 may use multiple options simultaneously. These experimental options
 are highly likely to have different meanings when used for different
 experiments. Therefore, they SHOULD NOT be used without an explicit
 human decision and MUST NOT be used in unmanaged networks such as
 home networks.
 These names are also RECOMMENDED for use in documentation
 examples.

 Security Considerations
 A successful attack on negotiation-enabled nodes
 would be extremely harmful, as such nodes might end up with a completely
 undesirable configuration that would also adversely affect their peers.
 GRASP nodes and messages therefore require full protection.
 As explained in , GRASP MUST run within a secure
 environment such as the ACP
 ,
 except for the constrained instances described in .

 Authentication

 A cryptographically authenticated identity for each device is
 needed in an Autonomic Network. It is not safe to assume that a
 large network is physically secured against interference or that all
 personnel are trustworthy. Each autonomic node MUST be capable
 of proving its identity and authenticating its messages. GRASP
 relies on a separate, external certificate-based security mechanism to support
 authentication, data integrity protection, and anti-replay protection.
 Since GRASP must be deployed in an existing secure environment,
 the protocol itself specifies nothing concerning the trust anchor and
 certification authority. For example, in the ACP
 , all nodes can
 trust each other and the ASAs installed in them.
 If GRASP is used temporarily without an external security mechanism,
 for example, during system bootstrap (),
 the Session ID () will act as a nonce to
 provide limited protection against the injecting of responses by third parties.
 A full analysis of the secure bootstrap process is in
 .

 Authorization and roles

 GRASP is agnostic about the roles and capabilities of individual
 ASAs and about which objectives a particular ASA is authorized to support. An implementation
 might support precautions such as allowing only one ASA in a given node to modify
 a given objective, but this may not be appropriate in all cases. For example,
 it might be operationally useful to allow an old and a new version of the same
 ASA to run simultaneously during an overlap period. These questions are out
 of scope for the present specification.

 Privacy and confidentiality

 GRASP is intended for network-management purposes involving
 network elements, not end hosts. Therefore, no personal information
 is expected to be involved in the signaling protocol, so there should be no direct
 impact on personal privacy. Nevertheless, applications that do
 convey personal information cannot be excluded. Also, traffic flow paths, VPNs,
 etc., could be negotiated, which could be of interest for traffic
 analysis. Operators generally want to conceal details of their
 network topology and traffic density from outsiders. Therefore,
 since insider attacks cannot be excluded in a large
 network, the security mechanism for the protocol MUST
 provide message confidentiality. This is why
 requires either an ACP or an alternative security mechanism.

 Link-local multicast security

 GRASP has no reasonable alternative to using link-local
 multicast for Discovery or Flood Synchronization messages, and these
 messages are sent in the clear and with no authentication. They are only
 sent on interfaces within the Autonomic Network (see and). They are, however, available to on-link
 eavesdroppers and could be forged by on-link attackers. In the case
 of discovery, the Discovery Responses are unicast and will therefore
 be protected (), and an
 untrusted forger will not be able to receive responses. In the case of
 flood synchronization, an on-link eavesdropper will be able to receive
 the flooded objectives, but there is no response message to
 consider. Some precautions for Flood Synchronization messages are
 suggested in .

 DoS attack protection

 GRASP discovery partly relies on insecure link-local multicast. Since
 routers participating in GRASP sometimes relay Discovery messages from one link
 to another, this could be a vector for denial-of-service attacks. Some
 mitigations are specified in . However, malicious
 code installed inside the ACP could always launch
 DoS attacks consisting of either spurious Discovery messages or spurious
 Discovery Responses. It is important that firewalls prevent any GRASP messages
 from entering the domain from an unknown source.

 Security during bootstrap and discovery

 A node cannot trust GRASP traffic from other nodes until the security
 environment (such as the ACP) has identified the trust anchor and can authenticate traffic
 by validating certificates for other nodes. Also, until it has successfully enrolled
 , a node cannot
 assume that other nodes are able to authenticate its own traffic.
 Therefore, GRASP discovery during the bootstrap phase for a new device
 will inevitably be insecure. Secure synchronization and negotiation
 will be impossible until enrollment is complete. Further details
 are given in .

 Security of discovered locators

 When GRASP discovery returns an IP address, it MUST be that of a node
 within the secure environment (). If it returns
 an FQDN or a URI, the ASA that receives it MUST NOT assume that the
 target of the locator is within the secure environment.

 CDDL Specification of GRASP

grasp-message = (message .within message-structure) / noop-message

message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

MESSAGE_TYPE = 0..255
session-id = 0..4294967295 ; up to 32 bits
grasp-option = any

message /= discovery-message
discovery-message = [M_DISCOVERY, session-id, initiator, objective]

message /= response-message ; response to Discovery
response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective]

message /= synch-message ; response to Synchronization request
synch-message = [M_SYNCH, session-id, objective]

message /= flood-message
flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

message /= request-negotiation-message
request-negotiation-message = [M_REQ_NEG, session-id, objective]

message /= request-synchronization-message
request-synchronization-message = [M_REQ_SYN, session-id, objective]

message /= negotiation-message
negotiation-message = [M_NEGOTIATE, session-id, objective]

message /= end-message
end-message = [M_END, session-id, accept-option / decline-option]

message /= wait-message
wait-message = [M_WAIT, session-id, waiting-time]

message /= invalid-message
invalid-message = [M_INVALID, session-id, ?any]

noop-message = [M_NOOP]

divert-option = [O_DIVERT, +locator-option]

accept-option = [O_ACCEPT]

decline-option = [O_DECLINE, ?reason]
reason = text ; optional UTF-8 error message

waiting-time = 0..4294967295 ; in milliseconds
ttl = 0..4294967295 ; in milliseconds

locator-option /= [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
ipv4-address = bytes .size 4

locator-option /= [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
ipv6-address = bytes .size 16

locator-option /= [O_FQDN_LOCATOR, text, transport-proto,
 port-number]

locator-option /= [O_URI_LOCATOR, text,
 transport-proto / null, port-number / null]

transport-proto = IPPROTO_TCP / IPPROTO_UDP
IPPROTO_TCP = 6
IPPROTO_UDP = 17
port-number = 0..65535

initiator = ipv4-address / ipv6-address

objective-flags = uint .bits objective-flag

objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is a dry run
)

objective = [objective-name, objective-flags,
 loop-count, ?objective-value]

objective-name = text ; see section "Format of Objective Options"

objective-value = any

loop-count = 0..255

; Constants for message types and option types

M_NOOP = 0
M_DISCOVERY = 1
M_RESPONSE = 2
M_REQ_NEG = 3
M_REQ_SYN = 4
M_NEGOTIATE = 5
M_END = 6
M_WAIT = 7
M_SYNCH = 8
M_FLOOD = 9
M_INVALID = 99

O_DIVERT = 100
O_ACCEPT = 101
O_DECLINE = 102
O_IPv6_LOCATOR = 103
O_IPv4_LOCATOR = 104
O_FQDN_LOCATOR = 105
O_URI_LOCATOR = 106

 IANA Considerations
 This document defines the GeneRic Autonomic Signaling Protocol (GRASP).
 explains the following link-local multicast
 addresses that IANA has assigned for use by GRASP.
 Assigned in the "Link-Local Scope Multicast Addresses" subregistry
of the "IPv6 Multicast Address Space Registry":

 Address(es):
 ff02::13
 Description:
 ALL_GRASP_NEIGHBORS
 Reference:
 RFC 8990

 Assigned in the "Local Network Control Block (224.0.0.0 - 224.0.0.255 (224.0.0/24))"
subregistry of the "IPv4 Multicast Address Space Registry":

 Address(es):
 224.0.0.119
 Description:
 ALL_GRASP_NEIGHBORS
 Reference:
 RFC 8990

 explains the following User Port (GRASP_LISTEN_PORT),
 which IANA has assigned for use by GRASP for both UDP and TCP:

 Service Name:
 grasp
 Port Number:
 7017
 Transport Protocol:
 udp, tcp
 Description
 GeneRic Autonomic Signaling Protocol
 Assignee:
 IESG <iesg@ietf.org>
 Contact:
 IETF Chair <chair@ietf.org>
 Reference:
 RFC 8990

 The IANA has created the "GeneRic Autonomic Signaling Protocol (GRASP) Parameters" registry,
 which includes two subregistries: "GRASP Messages and Options" and
 "GRASP Objective Names".
 The values in the "GRASP Messages and Options" subregistry are names paired with decimal
 integers. Future values MUST be assigned using the Standards Action policy
 defined by . The following initial values are assigned by this document:

 Initial Values of the "GRASP Messages and Options" Subregistry

 Value
 Message/Option

 0
 M_NOOP

 1
 M_DISCOVERY

 2
 M_RESPONSE

 3
 M_REQ_NEG

 4
 M_REQ_SYN

 5
 M_NEGOTIATE

 6
 M_END

 7
 M_WAIT

 8
 M_SYNCH

 9
 M_FLOOD

 99
 M_INVALID

 100
 O_DIVERT

 101
 O_ACCEPT

 102
 O_DECLINE

 103
 O_IPv6_LOCATOR

 104
 O_IPv4_LOCATOR

 105
 O_FQDN_LOCATOR

 106
 O_URI_LOCATOR

 The values in the "GRASP Objective Names" subregistry are UTF-8
 strings that MUST NOT include a colon (":"), according
 to . Future values
 MUST be assigned using the Specification Required policy
 defined by .
 To assist expert review of a new objective, the specification should
 include a precise description of the format of the new objective, with
 sufficient explanation of its semantics to allow independent
 implementations. See for
 more details. If the new objective is similar in name or purpose to a
 previously registered objective, the specification should explain why a
 new objective is justified.
 The following initial values are assigned by this document:

 Initial Values of the "GRASP Objective Names" Subregistry

 Objective Name
 Reference

 EX0
 RFC 8990

 EX1
 RFC 8990

 EX2
 RFC 8990

 EX3
 RFC 8990

 EX4
 RFC 8990

 EX5
 RFC 8990

 EX6
 RFC 8990

 EX7
 RFC 8990

 EX8
 RFC 8990

 EX9
 RFC 8990

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC)

 This document specifies a method for generating IPv6 Interface Identifiers to be used with IPv6 Stateless Address Autoconfiguration (SLAAC), such that an IPv6 address configured using this method is stable within each subnet, but the corresponding Interface Identifier changes when the host moves from one network to another. This method is meant to be an alternative to generating Interface Identifiers based on hardware addresses (e.g., IEEE LAN Media Access Control (MAC) addresses), such that the benefits of stable addresses can be achieved without sacrificing the security and privacy of users. The method specified in this document applies to all prefixes a host may be employing, including link-local, global, and unique-local prefixes (and their corresponding addresses).

 UDP Usage Guidelines

 The User Datagram Protocol (UDP) provides a minimal message-passing transport that has no inherent congestion control mechanisms. This document provides guidelines on the use of UDP for the designers of applications, tunnels, and other protocols that use UDP. Congestion control guidelines are a primary focus, but the document also provides guidance on other topics, including message sizes, reliability, checksums, middlebox traversal, the use of Explicit Congestion Notification (ECN), Differentiated Services Code Points (DSCPs), and ports.
 Because congestion control is critical to the stable operation of the Internet, applications and other protocols that choose to use UDP as an Internet transport must employ mechanisms to prevent congestion collapse and to establish some degree of fairness with concurrent traffic. They may also need to implement additional mechanisms, depending on how they use UDP.
 Some guidance is also applicable to the design of other protocols (e.g., protocols layered directly on IP or via IP-based tunnels), especially when these protocols do not themselves provide congestion control.
 This document obsoletes RFC 5405 and adds guidelines for multicast UDP usage.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 An Autonomic Control Plane (ACP)

 Informative References

 Autonomic Distributed Node Consensus Protocol

	

 This document describes the Autonomic Distributed Node Consensus
 Protocol (ADNCP), a profile of Distributed Node Consensus Protocol
 (DNCP) for autonomic networking.

 Work in Progress

 Guidelines for Autonomic Service Agents

	

 Nokia

 Huawei Technologies Co., Ltd

 Nokia

 This document proposes guidelines for the design of Autonomic Service
 Agents for autonomic networks, as a contribution to describing an
 autonomic ecosystem. It is based on the Autonomic Network
 Infrastructure outlined in the ANIMA reference model, using the
 Autonomic Control Plane and the Generic Autonomic Signaling Protocol.

 Work in Progress

 IP based Generic Control Protocol (IGCP)

 Fraunhofer Fokus

 This document presents a proposal for a multi-purpose Generic Control
 Protocol (IGCP) for IP based networks. There is a growing need for a
 generic control protocol framework that can be further customized to
 specific usage contexts in which certain types of control information
 exchange messages and behavior among some functional entities hosted
 by different nodes or devices is desired. For example, the growing
 area of self-management, self-organization and autonomic networking
 introduces functional entities into the node/device and network
 architectures that need to exchange control information in order to
 implement self-adaptive behavior by dynamically configuring and
 optimizing the network. In this Draft we capture a number of control
 message exchange types of contexts (semantics) that can be
 selectively applied in the exchange of control information, which can
 form the basis of a generic control protocol, while at the same time
 defining the part in the message format that can be further
 customized according to the needs of specific functional entities
 designed to use the generic control protocol for exchanging control
 information. In this Draft, we present our proposal for such a
 generic control protocol, whose message format is divided into two
 parts: a Common Part and a Generic Data Part. The Common Part
 defines a set of a variety of selectable control semantics (e.g.
 simple one-way control information flow, indications of whether an
 acknowledgement is needed or not, solicitations for information or
 push/pull behaviors, negotiations for parameter value settings, etc).
 The Generic Data Part can be further customized and structured
 according to some specific use case of conveying control information
 carried by the Data Part that need to be parsed and used by some
 entities designed to interpret the Data Part according to their own
 specific customization and structuring of the Data Part. We also
 give an example domain of application of the IGCP, namely the domain
 of autonomic adaptive control of network behaviours, of which we
 illustrate further by providing an example Use Case that customizes
 the Data Part of the IGCP for use by special functional entities
 residing in different nodes in exchanging information using the IGCP
 messages.

 Work in Progress

 Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification

 This memo describes version 1 of RSVP, a resource reservation setup protocol designed for an integrated services Internet. RSVP provides receiver-initiated setup of resource reservations for multicast or unicast data flows, with good scaling and robustness properties. [STANDARDS-TRACK]

 Server Cache Synchronization Protocol (SCSP)

 This document describes the Server Cache Synchronization Protocol (SCSP) and is written in terms of SCSP's use within Non Broadcast Multiple Access (NBMA) networks; although, a somewhat straight forward usage is applicable to BMA networks. [STANDARDS-TRACK]

 Service Location Protocol, Version 2

 The Service Location Protocol provides a scalable framework for the discovery and selection of network services. Using this protocol, computers using the Internet need little or no static configuration of network services for network based applications. This is especially important as computers become more portable, and users less tolerant or able to fulfill the demands of network system administration. [STANDARDS-TRACK]

 Remote Authentication Dial In User Service (RADIUS)

 This document describes a protocol for carrying authentication, authorization, and configuration information between a Network Access Server which desires to authenticate its links and a shared Authentication Server. [STANDARDS-TRACK]

 Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP)

 This document defines version 2 of the protocol operations for the Simple Network Management Protocol (SNMP). It defines the syntax and elements of procedure for sending, receiving, and processing SNMP PDUs. This document obsoletes RFC 1905. [STANDARDS-TRACK]

 Basic Socket Interface Extensions for IPv6

 The de facto standard Application Program Interface (API) for TCP/IP applications is the "sockets" interface. Although this API was developed for Unix in the early 1980s it has also been implemented on a wide variety of non-Unix systems. TCP/IP applications written using the sockets API have in the past enjoyed a high degree of portability and we would like the same portability with IPv6 applications. But changes are required to the sockets API to support IPv6 and this memo describes these changes. These include a new socket address structure to carry IPv6 addresses, new address conversion functions, and some new socket options. These extensions are designed to provide access to the basic IPv6 features required by TCP and UDP applications, including multicasting, while introducing a minimum of change into the system and providing complete compatibility for existing IPv4 applications. Additional extensions for advanced IPv6 features (raw sockets and access to the IPv6 extension headers) are defined in another document. This memo provides information for the Internet community.

 Neighbor Discovery for IP version 6 (IPv6)

 This document specifies the Neighbor Discovery protocol for IP Version 6. IPv6 nodes on the same link use Neighbor Discovery to discover each other's presence, to determine each other's link-layer addresses, to find routers, and to maintain reachability information about the paths to active neighbors. [STANDARDS-TRACK]

 Enterprise Number for Documentation Use

 This document describes an Enterprise Number (also known as SMI Network Management Private Enterprise Code) for use in documentation. This memo provides information for the Internet community.

 GIST: General Internet Signalling Transport

 This document specifies protocol stacks for the routing and transport of per-flow signalling messages along the path taken by that flow through the network. The design uses existing transport and security protocols under a common messaging layer, the General Internet Signalling Transport (GIST), which provides a common service for diverse signalling applications. GIST does not handle signalling application state itself, but manages its own internal state and the configuration of the underlying transport and security protocols to enable the transfer of messages in both directions along the flow path. The combination of GIST and the lower layer transport and security protocols provides a solution for the base protocol component of the "Next Steps in Signalling" (NSIS) framework. This document defines an Experimental Protocol for the Internet community.

 The Trickle Algorithm

 The Trickle algorithm allows nodes in a lossy shared medium (e.g., low-power and lossy networks) to exchange information in a highly robust, energy efficient, simple, and scalable manner. Dynamically adjusting transmission windows allows Trickle to spread new information on the scale of link-layer transmission times while sending only a few messages per hour when information does not change. A simple suppression mechanism and transmission point selection allow Trickle's communication rate to scale logarithmically with density. This document describes the Trickle algorithm and considerations in its use. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Diameter Base Protocol

 The Diameter base protocol is intended to provide an Authentication, Authorization, and Accounting (AAA) framework for applications such as network access or IP mobility in both local and roaming situations. This document specifies the message format, transport, error reporting, accounting, and security services used by all Diameter applications. The Diameter base protocol as defined in this document obsoletes RFC 3588 and RFC 5719, and it must be supported by all new Diameter implementations. [STANDARDS-TRACK]

 Multicast DNS

 As networked devices become smaller, more portable, and more ubiquitous, the ability to operate with less configured infrastructure is increasingly important. In particular, the ability to look up DNS resource record data types (including, but not limited to, host names) in the absence of a conventional managed DNS server is useful.
 Multicast DNS (mDNS) provides the ability to perform DNS-like operations on the local link in the absence of any conventional Unicast DNS server. In addition, Multicast DNS designates a portion of the DNS namespace to be free for local use, without the need to pay any annual fee, and without the need to set up delegations or otherwise configure a conventional DNS server to answer for those names.
 The primary benefits of Multicast DNS names are that (i) they require little or no administration or configuration to set them up, (ii) they work when no infrastructure is present, and (iii) they work during infrastructure failures.

 DNS-Based Service Discovery

 This document specifies how DNS resource records are named and structured to facilitate service discovery. Given a type of service that a client is looking for, and a domain in which the client is looking for that service, this mechanism allows clients to discover a list of named instances of that desired service, using standard DNS queries. This mechanism is referred to as DNS-based Service Discovery, or DNS-SD.

 Port Control Protocol (PCP)

 The Port Control Protocol allows an IPv6 or IPv4 host to control how incoming IPv6 or IPv4 packets are translated and forwarded by a Network Address Translator (NAT) or simple firewall, and also allows a host to optimize its outgoing NAT keepalive messages.

 Requirements for Scalable DNS-Based Service Discovery (DNS-SD) / Multicast DNS (mDNS) Extensions

 DNS-based Service Discovery (DNS-SD) over Multicast DNS (mDNS) is widely used today for discovery and resolution of services and names on a local link, but there are use cases to extend DNS-SD/mDNS to enable service discovery beyond the local link. This document provides a problem statement and a list of requirements for scalable DNS-SD.

 Autonomic Networking: Definitions and Design Goals

 Autonomic systems were first described in 2001. The fundamental goal is self-management, including self-configuration, self-optimization, self-healing, and self-protection. This is achieved by an autonomic function having minimal dependencies on human administrators or centralized management systems. It usually implies distribution across network elements.
 This document defines common language and outlines design goals (and what are not design goals) for autonomic functions. A high-level reference model illustrates how functional elements in an Autonomic Network interact. This document is a product of the IRTF's Network Management Research Group.

 General Gap Analysis for Autonomic Networking

 This document provides a problem statement and general gap analysis for an IP-based Autonomic Network that is mainly based on distributed network devices. The document provides background by reviewing the current status of autonomic aspects of IP networks and the extent to which current network management depends on centralization and human administrators. Finally, the document outlines the general features that are missing from current network abilities and are needed in the ideal Autonomic Network concept.
 This document is a product of the IRTF's Network Management Research Group.

 Distributed Node Consensus Protocol

 This document describes the Distributed Node Consensus Protocol (DNCP), a generic state synchronization protocol that uses the Trickle algorithm and hash trees. DNCP is an abstract protocol and must be combined with a specific profile to make a complete implementable protocol.

 Home Networking Control Protocol

 This document describes the Home Networking Control Protocol (HNCP), an extensible configuration protocol, and a set of requirements for home network devices. HNCP is described as a profile of and extension to the Distributed Node Consensus Protocol (DNCP). HNCP enables discovery of network borders, automated configuration of addresses, name resolution, service discovery, and the use of any routing protocol that supports routing based on both the source and destination address.

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols

 Application protocols using Unicode code points in protocol strings need to properly handle such strings in order to enforce internationalization rules for strings placed in various protocol slots (such as addresses and identifiers) and to perform valid comparison operations (e.g., for purposes of authentication or authorization). This document defines a framework enabling application protocols to perform the preparation, enforcement, and comparison of internationalized strings ("PRECIS") in a way that depends on the properties of Unicode code points and thus is more agile with respect to versions of Unicode. As a result, this framework provides a more sustainable approach to the handling of internationalized strings than the previous framework, known as Stringprep (RFC 3454). This document obsoletes RFC 7564.

 Using an Autonomic Control Plane for Stable Connectivity of Network Operations, Administration, and Maintenance (OAM)

 Operations, Administration, and Maintenance (OAM), as per BCP 161, for data networks is often subject to the problem of circular dependencies when relying on connectivity provided by the network to be managed for the OAM purposes.
 Provisioning while bringing up devices and networks tends to be more difficult to automate than service provisioning later on. Changes in core network functions impacting reachability cannot be automated because of ongoing connectivity requirements for the OAM equipment itself, and widely used OAM protocols are not secure enough to be carried across the network without security concerns.
 This document describes how to integrate OAM processes with an autonomic control plane in order to provide stable and secure connectivity for those OAM processes. This connectivity is not subject to the aforementioned circular dependencies.

 Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

 This document describes the Dynamic Host Configuration Protocol for IPv6 (DHCPv6): an extensible mechanism for configuring nodes with network configuration parameters, IP addresses, and prefixes. Parameters can be provided statelessly, or in combination with stateful assignment of one or more IPv6 addresses and/or IPv6 prefixes. DHCPv6 can operate either in place of or in addition to stateless address autoconfiguration (SLAAC).
 This document updates the text from RFC 3315 (the original DHCPv6 specification) and incorporates prefix delegation (RFC 3633), stateless DHCPv6 (RFC 3736), an option to specify an upper bound for how long a client should wait before refreshing information (RFC 4242), a mechanism for throttling DHCPv6 clients when DHCPv6 service is not available (RFC 7083), and relay agent handling of unknown messages (RFC 7283). In addition, this document clarifies the interactions between models of operation (RFC 7550). As such, this document obsoletes RFC 3315, RFC 3633, RFC 3736, RFC 4242, RFC 7083, RFC 7283, and RFC 7550.

 GeneRic Autonomic Signaling Protocol Application Program Interface (GRASP API)

 A Reference Model for Autonomic Networking

 Bootstrapping Remote Secure Key Infrastructure (BRSKI)

 Example Message Formats
 For readers unfamiliar with CBOR, this appendix shows a number of example GRASP
 messages conforming to the CDDL syntax given in .
 Each message is shown three times in the following formats:

 CBOR diagnostic notation.
 Similar, but showing the names of the constants. (Details of the flag bit encoding are omitted.)
 Hexadecimal version of the CBOR wire format.

 Long lines are split for display purposes only.

 Discovery Example
 The initiator (2001:db8:f000:baaa:28cc:dc4c:9703:6781) multicasts a Discovery message
looking for objective EX1:

[1, 13948744, h'20010db8f000baaa28ccdc4c97036781', ["EX1", 5, 2, 0]]
[M_DISCOVERY, 13948744, h'20010db8f000baaa28ccdc4c97036781',
 ["EX1", F_SYNCH_bits, 2, 0]]
h'84011a00d4d7485020010db8f000baaa28ccdc4c970367818463455831050200'

 A peer (2001:0db8:f000:baaa:f000:baaa:f000:baaa) responds with a locator:

[2, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [103, h'20010db8f000baaaf000baaaf000baaa', 6, 49443]]
[M_RESPONSE, 13948744, h'20010db8f000baaa28ccdc4c97036781', 60000,
 [O_IPv6_LOCATOR, h'20010db8f000baaaf000baaaf000baaa',
 IPPROTO_TCP, 49443]]
h'85021a00d4d7485020010db8f000baaa28ccdc4c9703678119ea6084186750
 20010db8f000baaaf000baaaf000baaa0619c123'

 Flood Example
 The initiator multicasts a Flood Synchronization message. The single objective has a null locator. There is no response:

[9, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", 5, 2, ["Example 1 value=", 100]],[]]]
[M_FLOOD, 3504974, h'20010db8f000baaa28ccdc4c97036781', 10000,
 [["EX1", F_SYNCH_bits, 2, ["Example 1 value=", 100]],[]]]
h'85091a00357b4e5020010db8f000baaa28ccdc4c97036781192710
 828463455831050282704578616d706c6520312076616c75653d186480'

 Synchronization Example
 Following successful discovery of objective EX2, the initiator unicasts a Request Synchronization message:

[4, 4038926, ["EX2", 5, 5, 0]]
[M_REQ_SYN, 4038926, ["EX2", F_SYNCH_bits, 5, 0]]
h'83041a003da10e8463455832050500'

 The peer responds with a value:

[8, 4038926, ["EX2", 5, 5, ["Example 2 value=", 200]]]
[M_SYNCH, 4038926, ["EX2", F_SYNCH_bits, 5, ["Example 2 value=", 200]]]
h'83081a003da10e8463455832050582704578616d706c6520322076616c75653d18c8'

 Simple Negotiation Example
 Following successful discovery of objective EX3, the initiator unicasts a Request Negotiation message:

[3, 802813, ["EX3", 3, 6, ["NZD", 47]]]
[M_REQ_NEG, 802813, ["EX3", F_NEG_bits, 6, ["NZD", 47]]]
h'83031a000c3ffd8463455833030682634e5a44182f'

 The peer responds with immediate acceptance. Note that no objective is needed
because the initiator's request was accepted without change:

[6, 802813, [101]]
[M_END , 802813, [O_ACCEPT]]
h'83061a000c3ffd811865'

 Complete Negotiation Example
 Again the initiator unicasts a Request Negotiation message:

[3, 13767778, ["EX3", 3, 6, ["NZD", 410]]]
[M_REQ_NEG, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 410]]]
h'83031a00d214628463455833030682634e5a4419019a'

 The responder starts to negotiate (making an offer):

[5, 13767778, ["EX3", 3, 6, ["NZD", 80]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 80]]]
h'83051a00d214628463455833030682634e5a441850'

 The initiator continues to negotiate (reducing its request, and note that the loop count is decremented):

[5, 13767778, ["EX3", 3, 5, ["NZD", 307]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 5, ["NZD", 307]]]
h'83051a00d214628463455833030582634e5a44190133'

 The responder asks for more time:

[7, 13767778, 34965]
[M_WAIT, 13767778, 34965]
h'83071a00d21462198895'

 The responder continues to negotiate (increasing its offer):

[5, 13767778, ["EX3", 3, 4, ["NZD", 120]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 4, ["NZD", 120]]]
h'83051a00d214628463455833030482634e5a441878'

 The initiator continues to negotiate (reducing its request):

[5, 13767778, ["EX3", 3, 3, ["NZD", 246]]]
[M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 3, ["NZD", 246]]]
h'83051a00d214628463455833030382634e5a4418f6'

 The responder refuses to negotiate further:

[6, 13767778, [102, "Insufficient funds"]]
[M_END , 13767778, [O_DECLINE, "Insufficient funds"]]
h'83061a00d2146282186672496e73756666696369656e742066756e6473'

 This negotiation has failed. If either side had sent
[M_END, 13767778, [O_ACCEPT]] it would have succeeded, converging
on the objective value in the preceding M_NEGOTIATE. Note that apart
from the initial M_REQ_NEG, the process is symmetrical.

 Requirement Analysis of Discovery, Synchronization, and Negotiation
 This section discusses the requirements for discovery, negotiation,
 and synchronization capabilities. The primary user of the protocol is an Autonomic Service
 Agent (ASA), so the requirements are mainly expressed as the features needed by an ASA.
 A single physical device might contain several ASAs, and a single ASA might manage
 several technical objectives. If a technical objective is managed by several ASAs,
 any necessary coordination is outside the scope of GRASP.
 Furthermore, requirements for ASAs themselves, such as the processing of Intent
 , are out of scope for the present document.

 Requirements for Discovery

 ASAs may be designed to manage any type of configurable device or software,
 as required in . A basic requirement
 is therefore that the protocol can represent and discover any
 kind of technical objective (as defined in)
 among arbitrary subsets of participating nodes.
 In an Autonomic Network, we must assume that when a device starts up,
 it has no information about any peer devices, the network structure,
 or the specific role it must play. The ASA(s) inside the device are
 in the same situation. In some cases, when a new application session
 starts within a device, the device or ASA may again lack
 information about relevant peers. For example, it might be necessary to set
 up resources on multiple other devices, coordinated and matched to
 each other so that there is no wasted resource. Security settings
 might also need updating to allow for the new device or user.
 The relevant peers may be different for different technical
 objectives. Therefore discovery needs to be repeated as often as
 necessary to find peers capable of acting as counterparts for each
 objective that a discovery initiator needs to handle.
 From this background we derive the next three requirements:

 When an ASA first starts up, it may have no knowledge of the specific network to
 which it is attached.
 Therefore the discovery process must be able to support any network scenario,
 assuming only that the device concerned is bootstrapped from factory condition.

 When an ASA starts up, it must require no configured location information about any
 peers in order to discover them.
 If an ASA supports multiple technical objectives, relevant peers may be different
 for different discovery objectives, so discovery needs to be performed separately to
 find counterparts for each objective. Thus, there must be a mechanism by
 which an ASA can separately discover peer ASAs for each of the
 technical objectives that it needs to manage, whenever necessary.
 Following discovery, an ASA will normally perform negotiation
 or synchronization for the corresponding objectives. The design
 should allow for this by conveniently linking discovery to negotiation
 and synchronization. It may provide an optional mechanism to
 combine discovery and negotiation/synchronization in a single protocol exchange.
 Some objectives may only be significant on the local link,
 but others may be significant across the routed network and require
 off-link operations. Thus, the relevant peers might be immediate
 neighbors on the same layer 2 link, or they might be more distant and
 only accessible via layer 3. The mechanism must therefore provide both
 on-link and off-link discovery of ASAs supporting specific technical
 objectives.

 The discovery process should be flexible enough to allow for
 special cases, such as the following:

 During initialization, a device must be able to establish mutual trust
 with autonomic nodes elsewhere in the network and participate in an
 authentication mechanism. Although
 this will inevitably start with a discovery action, it is a special case
 precisely because trust is not yet established. This topic
 is the subject of .
 We require that once trust has been established for a device,
 all ASAs within the device inherit the device's credentials and are also trusted.
 This does not preclude the device having multiple credentials.

 Depending on the type of network involved, discovery of other
 central functions might be needed, such as
 the Network Operations Center (NOC) .
 The protocol must be capable of supporting such discovery during initialization,
 as well as discovery during ongoing operation.

 The discovery process must not generate excessive traffic and
 must take account of sleeping nodes.
 There must be a mechanism for handling stale discovery results.

 Requirements for Synchronization and Negotiation Capability
 Autonomic Networks need to be able to manage many
 different types of parameters and consider many dimensions,
 such as latency, load, unused or limited resources,
 conflicting resource requests,
 security settings, power saving, load balancing, etc.
 Status information and resource metrics need to be shared between
 nodes for dynamic adjustment of resources and for monitoring purposes.
 While this might be achieved by existing protocols when they are
 available, the new protocol needs to be able to support parameter
 exchange, including mutual synchronization, even when no negotiation
 as such is required. In general, these parameters do not apply to all
 participating nodes, but only to a subset.

 A basic requirement for the protocol is therefore the
 ability to represent, discover, synchronize, and negotiate almost any
 kind of network parameter among selected subsets of participating nodes.
 Negotiation is an iterative request/response process that must be guaranteed to terminate
 (with success or failure). While tie-breaking rules must be defined specifically
 for each use case, the protocol should have some general mechanisms in support of loop
 and deadlock prevention, such as hop-count limits or timeouts.
 Synchronization must be possible for groups of nodes ranging from small to very large.

 To avoid "reinventing the wheel", the protocol should be able to encapsulate the
 data formats used by existing configuration protocols (such as Network Configuration Protocol (NETCONF) and YANG)
 in cases where that is convenient.
 Human intervention in complex situations is costly and error prone.
 Therefore, synchronization or negotiation of parameters without human
 intervention is desirable whenever the coordination of multiple devices can improve
 overall network performance. It follows that the protocol's resource requirements
 must be small enough to fit in any device that would otherwise need human intervention.
 The issue of running in constrained nodes
 is discussed in .
 Human intervention in large networks is often replaced by use of a
 top-down network management system (NMS). It therefore follows that
 the protocol, as part of the Autonomic Networking Infrastructure, should
 be capable of running in any device that would otherwise be managed by
 an NMS, and that it can coexist with an NMS and with protocols
 such as SNMP and NETCONF.

 Specific autonomic features are expected to be implemented by individual ASAs,
 but the protocol must be general enough to allow them. Some examples follow:

 Dependencies and conflicts: In order to
 decide upon a configuration for a given device, the device may need
 information from neighbors. This can be established through the
 negotiation procedure, or through synchronization if that
 is sufficient. However, a given item in a neighbor
 may depend on other information from its own neighbors, which may
 need another negotiation or synchronization procedure to obtain or decide.
 Therefore, there are potential dependencies and conflicts among negotiation or synchronization
 procedures. Resolving dependencies and conflicts is a matter for the individual ASAs involved.
 To allow this, there need to be clear boundaries and convergence
 mechanisms for negotiations. Also some mechanisms are needed to avoid
 loop dependencies or uncontrolled growth in a tree of dependencies.
 It is the ASA designer's responsibility
 to avoid or detect looping dependencies or excessive growth of dependency trees.
 The protocol's role is limited to bilateral signaling between ASAs
 and the avoidance of loops during bilateral signaling.
 Recovery from faults and identification of faulty devices should be
 as automatic as possible. The protocol's role is limited to discovery, synchronization, and
 negotiation. These processes can occur at any time, and an ASA may
 need to repeat any of these steps when the ASA detects an event
 such as a negotiation counterpart failing.
 Since a major goal is to minimize human intervention, it is necessary that the
 network can in effect "think ahead" before changing its parameters. One aspect
 of this is an ASA that relies on a knowledge base to predict network behavior.
 This is out of scope for the signaling protocol. However, another aspect is
 forecasting the effect of a change by a "dry run" negotiation before actually
 installing the change. Signaling a dry run is therefore a desirable feature
 of the protocol.

 Note that management logging, monitoring, alerts, and tools for intervention are required.
 However, these can only be features of individual ASAs, not of the protocol itself.
 Another document discusses how
 such agents may be linked into conventional Operations, Administration, and Maintenance (OAM) systems via an Autonomic Control Plane
 .

 The protocol will be able to deal with a wide variety of
 technical objectives, covering any type of network parameter.
 Therefore the protocol will need a flexible and easily extensible format for
 describing objectives. At a later stage, it may be desirable to adopt an explicit
 information model. One consideration is whether to adopt an existing
 information model or to design a new one.

 Specific Technical Requirements

 It should be convenient for ASA designers to define new technical objectives
 and for programmers to express them, without excessive impact on
 runtime efficiency and footprint. In particular, it should be convenient for ASAs
 to be implemented independently of each other as user-space programs rather than as kernel
 code, where such a programming model is possible. The classes of device in which the protocol
 might run is discussed in .

 The protocol should be easily extensible in case the initially defined discovery,
 synchronization, and negotiation mechanisms prove to be insufficient.
 To be a generic platform, the protocol payload format should be
 independent of the transport protocol or IP version.
 In particular, it should be able to run over IPv6 or IPv4.
 However, some functions, such as multicasting on
 a link, might need to be IP version dependent. By default, IPv6 should
 be preferred.
 The protocol must be able to access off-link counterparts via routable addresses,
 i.e., must not be restricted to link-local operation.
 It must also be possible for an external discovery mechanism
 to be used, if appropriate for a given technical objective. In other words, GRASP discovery
 must not be a prerequisite for GRASP negotiation or synchronization.
 The protocol must be capable of distinguishing multiple simultaneous
 operations with one or more peers, especially when wait states occur.
 Intent: Although the distribution of Intent is out of scope
 for this document, the protocol must not by design exclude its
 use for Intent distribution.
 Management monitoring, alerts, and intervention:
 Devices should be able to report to a monitoring
 system. Some events must be able to generate operator alerts, and
 some provision for emergency intervention must be possible (e.g.,
 to freeze synchronization or negotiation in a misbehaving device). These features
 might not use the signaling protocol itself, but its design should not exclude such use.
 Because this protocol may directly cause changes to device configurations
 and have significant impacts on a running network, all protocol exchanges need to be
 fully secured against forged messages and man-in-the-middle attacks, and secured
 as much as reasonably possible against denial-of-service attacks. There must also
 be an encryption mechanism to resist unwanted monitoring. However, it is not required
 that the protocol itself provides these security features; it may depend on an existing
 secure environment.

 Capability Analysis of Current Protocols
 This appendix discusses various existing protocols with properties
 related to the requirements described in . The
 purpose is to evaluate whether any existing protocol, or a simple
 combination of existing protocols, can meet those requirements.
 Numerous protocols include some form of discovery, but these all appear to be very
 specific in their applicability. Service Location Protocol (SLP)
 provides service discovery for managed networks,
 but it requires configuration of its own servers. DNS-Based Service Discovery (DNS-SD)
 combined with Multicast DNS (mDNS) provides service discovery for
 small networks with a single link layer.
 aims to extend this to larger autonomous networks, but this is not yet
 standardized. However, both SLP and DNS-SD appear to
 target primarily application-layer services, not the layer 2 and 3 objectives
 relevant to basic network configuration. Both SLP and DNS-SD are text-based protocols.
 Simple Network Management Protocol (SNMP) uses
 a command/response model not well suited for peer negotiation.
 NETCONF uses an RPC model that does allow positive or
 negative responses from the target system, but this is still not
 adequate for negotiation.
 There are various existing protocols that have elementary negotiation
 abilities, such as Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
 , Neighbor Discovery (ND) ,
 Port Control Protocol (PCP) , Remote Authentication
 Dial-In User Service (RADIUS) , Diameter ,
 etc. Most of them are configuration or
 management protocols. However, they either provide only a simple
 request/response model in a master/slave context or very limited
 negotiation abilities.
 There are some signaling protocols with an element of negotiation.
 For example, Resource ReSerVation Protocol (RSVP)
 was designed for negotiating quality-of-service
 parameters along the path of a unicast or multicast flow. RSVP is a very
 specialized protocol aimed at end-to-end flows.
 A more generic design is General Internet
 Signalling Transport (GIST) ; however, it
 tries to solve many problems, making it complex, and is also aimed at per-flow
 signaling across many hops rather than at device-to-device signaling.
 However, we cannot completely exclude extended RSVP or GIST as a
 synchronization and negotiation protocol. They do not appear to be
 directly usable for peer discovery.
 RESTCONF is a protocol intended to
 convey NETCONF information expressed in the YANG language via HTTP,
 including the ability to transit HTML intermediaries. While this is a
 powerful approach in the context of centralized configuration of a
 complex network, it is not well adapted to efficient interactive
 negotiation between peer devices, especially simple ones that might
 not include YANG processing already.
 The Distributed Node Consensus Protocol (DNCP)
 is defined as a generic form
 of a state synchronization protocol, with a proposed usage profile being the
 Home Networking Control Protocol (HNCP)
 for configuring Homenet routers. A specific application of DNCP for Autonomic
 Networking was proposed in .
 According to :

 DNCP is designed to provide a way for each participating node to
 publish a set of TLV (Type-Length-Value) tuples (at most 64 KB) and to provide a
 shared and common view about the data published...
 DNCP is most suitable
 for data that changes only infrequently...
 If constant rapid
 state changes are needed, the preferable choice is to use an
 additional point-to-point channel...

 Specific features of DNCP include:

 Every participating node has a unique node identifier.
 DNCP messages are encoded as a sequence of TLV objects and sent over
 unicast UDP or TCP, with or without (D)TLS security.
 Multicast is used only for discovery of DNCP neighbors
 when lower security is acceptable.
 Synchronization of state is maintained by a flooding process using the Trickle algorithm.
 There is no bilateral synchronization or negotiation capability.
 The HNCP profile of DNCP is designed to operate between directly connected neighbors
 on a shared link using UDP and link-local IPv6 addresses.

 DNCP does not meet the needs of a general negotiation protocol because it is designed
 specifically for flooding synchronization. Also, in its HNCP profile, it is limited to link-local
 messages and to IPv6. However, at the minimum, it is a
 very interesting test case for this style of interaction between devices
 without needing a central authority, and it is a proven method of network-wide state
 synchronization by flooding.
 The Server Cache Synchronization Protocol (SCSP) also describes
 a method for cache synchronization and cache replication among a group of nodes.
 A proposal was made some years ago for an IP based Generic Control Protocol
 (IGCP) . This was aimed
 at information exchange and negotiation but not directly at peer
 discovery. However, it has many points in common with the present work.
 None of the above solutions appears to completely meet the needs of
 generic discovery, state synchronization, and negotiation in a single solution.
 Many of the protocols assume that they are working in a traditional
 top-down or north-south scenario, rather than a fluid peer-to-peer
 scenario. Most of them are specialized in one way or another. As a result,
 we have not identified a combination of existing protocols that meets the
 requirements in . Also, we have not identified a path
 by which one of the existing protocols could be extended to meet the
 requirements.

 Acknowledgments
 A major contribution to the original draft version of this document was
 made by ,
 and significant contributions were made by .
 Significant early review inputs were received from
 , ,
 , and .
 provided important assistance in
 debugging a prototype implementation.
 Valuable comments were received from
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 and participants in the Network Management Research Group,
 the ANIMA Working Group,
 and the IESG.

 Authors' Addresses

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 cabo@tzi.org

 School of Computer Science
 University of Auckland
 PB 92019
 Auckland
 1142
 New Zealand

 brian.e.carpenter@gmail.com

 Huawei Technologies Co., Ltd

 No.156 Beiqing Road
 Q14, Huawei Campus
 Hai-Dian District
 Beijing
 100095
 China

 leo.liubing@huawei.com

