
RFC 8765
DNS Push Notifications

Abstract
The Domain Name System (DNS) was designed to return matching records efficiently for queries
for data that are relatively static. When those records change frequently, DNS is still efficient at
returning the updated results when polled, as long as the polling rate is not too high. But, there
exists no mechanism for a client to be asynchronously notified when these changes occur. This
document defines a mechanism for a client to be notified of such changes to DNS records, called
DNS Push Notifications.

Stream: Internet Engineering Task Force (IETF)
RFC: 8765
Category: Standards Track
Published: June 2020 
ISSN: 2070-1721
Authors:   T. Pusateri

Una�liated
S. Cheshire
Apple Inc.

Status of This Memo 
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8765

Copyright Notice 
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Pusateri & Cheshire Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8765
https://www.rfc-editor.org/info/rfc8765
https://trustee.ietf.org/license-info


Table of Contents 
1.  Introduction

1.1.  Requirements Language

1.2.  Fatal Errors

2.  Motivation

3.  Overview

4.  State Considerations

5.  Transport

6.  Protocol Operation

6.1.  Discovery

6.2.  DNS Push Notification SUBSCRIBE

6.2.1.  SUBSCRIBE Request

6.2.2.  SUBSCRIBE Response

6.3.  DNS Push Notification Updates

6.3.1.  PUSH Message

6.4.  DNS Push Notification UNSUBSCRIBE

6.4.1.  UNSUBSCRIBE Message

6.5.  DNS Push Notification RECONFIRM

6.5.1.  RECONFIRM Message

6.6.  DNS Stateful Operations TLV Context Summary

6.7.  Client-Initiated Termination

6.8.  Client Fallback to Polling

7.  Security Considerations

7.1.  Security Services

7.2.  TLS Name Authentication

7.3.  TLS Early Data

7.4.  TLS Session Resumption

8.  IANA Considerations

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 2



1. Introduction 
Domain Name System (DNS) records may be updated using DNS Update . Other
mechanisms such as a Discovery Proxy  can also generate changes to a DNS zone. This
document specifies a protocol for DNS clients to subscribe to receive asynchronous notifications
of changes to RRsets of interest. It is immediately relevant in the case of DNS-based Service
Discovery  but is not limited to that use case; it provides a general DNS mechanism for
DNS record change notifications. Familiarity with the DNS protocol and DNS packet formats is
assumed   .

1.1. Requirements Language 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

1.2. Fatal Errors 
Certain invalid situations are described in this specification, such as a server sending a Push
Notification subscription request to a client, or a client sending a Push Notification response to a
server. These should never occur with a correctly implemented client and server, and if they do
occur, then they indicate a serious implementation error. In these extreme cases, there is no
reasonable expectation of a graceful recovery, and the recipient detecting the error should
respond by unilaterally aborting the session without regard for data loss. Such cases are
addressed by having an engineer investigate the cause of the failure and fixing the problem in
the software.

Where this specification says "forcibly abort", it means sending a TCP RST to terminate the TCP
connection and the TLS session running over that TCP connection. In the BSD Sockets API, this is
achieved by setting the SO_LINGER option to zero before closing the socket.

9.  References

9.1.  Normative References

9.2.  Informative References

Acknowledgments

Authors' Addresses

[RFC2136]
[RFC8766]

[RFC6763]

[RFC1034] [RFC1035] [RFC6895]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 3



2. Motivation 
As the domain name system continues to adapt to new uses and changes in deployment, polling
has the potential to burden DNS servers at many levels throughout the network. Other network
protocols have successfully deployed a publish/subscribe model following the Observer design
pattern . Extensible Messaging and Presence Protocol (XMPP) Publish-Subscribe 
and Atom  are examples. While DNS servers are generally highly tuned and capable of
a high rate of query/response traffic, adding a publish/subscribe model for tracking changes to
DNS records can deliver more timely notifications of changes with reduced CPU usage and lower
network traffic.

The guiding design principle of DNS Push Notifications is that clients that choose to use DNS Push
Notifications, instead of repeated polling with DNS queries, will receive the same results as they
could via sufficiently rapid polling, except more efficiently. This means that the rules for which
records match a given DNS Push Notification subscription are the same as the already
established rules used to determine which records match a given DNS query . For
example, name comparisons are done in a case-insensitive manner, and a record of type CNAME
in a zone matches any DNS TYPE in a query or subscription.

Multicast DNS  implementations always listen on a well-known link-local IP multicast
group address, and changes are sent to that multicast group address for all group members to
receive. Therefore, Multicast DNS already has asynchronous change notification capability.
When DNS-based Service Discovery  is used across a wide area network using Unicast
DNS (possibly facilitated via a Discovery Proxy ), it would be beneficial to have an
equivalent capability for Unicast DNS in order to allow clients to learn about DNS record changes
in a timely manner without polling.

The DNS Long-Lived Queries (LLQ) mechanism  is an existing deployed solution to
provide asynchronous change notifications; it was used by Apple's Back to My Mac 
service introduced in Mac OS X 10.5 Leopard in 2007. Back to My Mac was designed in an era
when the data center operations staff asserted that it was impossible for a server to handle large
numbers of TCP connections, even if those connections carried very little traffic and spent most
of their time idle. Consequently, LLQ was defined as a UDP-based protocol, effectively replicating
much of TCP's connection state management logic in user space and creating its own imitation of
existing TCP features like flow control, reliability, and the three-way handshake.

This document builds on experience gained with the LLQ protocol, with an improved design.
Instead of using UDP, this specification uses DNS Stateful Operations (DSO)  running
over TLS over TCP, and therefore doesn't need to reinvent existing TCP functionality. Using TCP
also gives long-lived low-traffic connections better longevity through NAT gateways without
depending on the gateway to support NAT Port Mapping Protocol (NAT-PMP)  or Port
Control Protocol (PCP) , or resorting to excessive keepalive traffic.

[OBS] [XEP0060]
[RFC4287]

[RFC1034]

[RFC6762]

[RFC6763]
[RFC8766]

[RFC8764]
[RFC6281]

[RFC8490]

[RFC6886]
[RFC6887]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 4



(a)

(b)

3. Overview 
A DNS Push Notification client subscribes for Push Notifications for a particular RRset by
connecting to the appropriate Push Notification server for that RRset and sending DSO message
(s) indicating the RRset(s) of interest. When the client loses interest in receiving further updates
to these records, it unsubscribes.

The DNS Push Notification server for a DNS zone is any server capable of generating the correct
change notifications for a name. It may be a primary, secondary, or stealth name server 

.

The _dns‑push‑tls._tcp.<zone> SRV record for a zone  reference the same target host and
port as that zone's _dns‑update‑tls._tcp.<zone> SRV record. When the same target host and
port is offered for both DNS Updates and DNS Push Notifications, a client  use a single DSO
session to that server for both DNS Updates and DNS Push Notification subscriptions. DNS
Updates and DNS Push Notifications may be handled on different ports on the same target host,
in which case they are not considered to be the "same server" for the purposes of this
specification, and communications with these two ports are handled independently. Supporting
DNS Updates and DNS Push Notifications on the same server is . A DNS Push
Notification server is not required to support DNS Update.

Standard DNS Queries  be sent over a DNS Push Notification (i.e., DSO) session. For any zone
for which the server is authoritative, it  respond authoritatively for queries for names
falling within that zone (e.g., the _dns‑push‑tls._tcp.<zone> SRV record) both for normal DNS
queries and for DNS Push Notification subscriptions. For names for which the server is acting as
a recursive resolver (e.g., when the server is the local recursive resolver) for any query for which
it supports DNS Push Notification subscriptions, it  also support standard queries.

DNS Push Notifications impose less load on the responding server than rapid polling would, but
Push Notifications do still have a cost. Therefore, DNS Push Notification clients 
recklessly create an excessive number of Push Notification subscriptions. Specifically:

A subscription should only be active when there is a valid reason to need live data (for
example, an on-screen display is currently showing the results to the user), and the
subscription  be canceled as soon as the need for that data ends (for example,
when the user dismisses that display). In the case of a device like a smartphone that, after
some period of inactivity, goes to sleep or otherwise darkens its screen, it should cancel its
subscriptions when darkening the screen (since the user cannot see any changes on the
display anyway) and reinstate its subscriptions when reawakening from display sleep. 
A DNS Push Notification client  routinely keep a DNS Push Notification
subscription active 24 hours a day, 7 days a week, just to keep a list in memory up to date
so that if the user does choose to bring up an on-screen display of that data, it can be
displayed really fast. DNS Push Notifications are designed to be fast enough that there is no
need to pre-load a "warm" list in memory just in case it might be needed later. 

[RFC8499]

MAY

MAY

OPTIONAL

MAY
MUST

MUST

MUST NOT

SHOULD

SHOULD NOT

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 5



Generally, as described in the DNS Stateful Operations specification , a client must not
keep a DSO session to a server open indefinitely if it has no subscriptions (or other operations)
active on that session. A client should begin closing a DSO session immediately after it becomes
idle, and then, if needed in the future, open a new session when required. Alternatively, a client
may speculatively keep an idle DSO session open for some time, subject to the constraint that it
must not keep a session open that has been idle for more than the session's idle timeout (15
seconds by default) .

Note that a DSO session that has an active DNS Push Notification subscription is not considered
idle, even if there is no traffic flowing for an extended period of time. In this case, the DSO
inactivity timeout does not apply, because the session is not inactive, but the keepalive interval
does still apply, to ensure the generation of sufficient messages to maintain state in middleboxes
(such at NAT gateways or firewalls) and for the client and server to periodically verify that they
still have connectivity to each other. This is described in 

.

4. State Considerations 
Each DNS Push Notification server is capable of handling some finite number of Push
Notification subscriptions. This number will vary from server to server and is based on physical
machine characteristics, network capacity, and operating system resource allocation. After a
client establishes a session to a DNS server, each subscription is individually accepted or
rejected. Servers may employ various techniques to limit subscriptions to a manageable level.
Correspondingly, the client is free to establish simultaneous sessions to alternate DNS servers
that support DNS Push Notifications for the zone and distribute subscriptions at the client's
discretion. In this way, both clients and servers can react to resource constraints.

5. Transport 
Other DNS operations like DNS Update   use either DNS over User Datagram
Protocol (UDP)  or DNS over Transmission Control Protocol (TCP)  as the
transport protocol, provided they follow the historical precedent that DNS queries must first be
sent using DNS over UDP and only switch to DNS over TCP if needed . This requirement
to prefer UDP has subsequently been relaxed .

In keeping with the more recent precedent, DNS Push Notification is defined only for TCP. DNS
Push Notification clients  use DNS Stateful Operations  running over TLS over TCP

.

Connection setup over TCP ensures return reachability and alleviates concerns of state overload
at the server, a potential problem with connectionless protocols, which can be more vulnerable
to being exploited by attackers using spoofed source addresses. All subscribers are guaranteed to
be reachable by the server by virtue of the TCP three-way handshake. Flooding attacks are
possible with any protocol, and a benefit of TCP is that there are already established industry
best practices to guard against SYN flooding and similar attacks  .

[RFC8490]

[RFC8490]

Section 6.2 of the DSO specification
[RFC8490]

[RFC2136] MAY
[RFC0768] [RFC0793]

[RFC1123]
[RFC7766]

MUST [RFC8490]
[RFC7858]

[SYN] [RFC4953]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8490#section-6.2


Use of TCP also allows DNS Push Notifications to take advantage of current and future
developments in TCP such as Multipath TCP (MPTCP) , TCP Fast Open (TFO) ,
the TCP RACK fast loss detection algorithm , and so on.

Transport Layer Security (TLS)  is well understood and is used by many application-
layer protocols running over TCP. TLS is designed to prevent eavesdropping, tampering, and
message forgery. TLS is  for every connection between a client subscriber and server in
this protocol specification. Additional security measures such as client authentication during TLS
negotiation may also be employed to increase the trust relationship between client and server.

6. Protocol Operation 
The DNS Push Notification protocol is a session-oriented protocol and makes use of DNS Stateful
Operations (DSO) .

For details of the DSO message format, refer to the DNS Stateful Operations specification 
. Those details are not repeated here.

DNS Push Notification clients and servers  support DSO. A single server can support DNS
Queries, DNS Updates, and DNS Push Notifications (using DSO) on the same TCP port.

A DNS Push Notification exchange begins with the client discovering the appropriate server,
using the procedure described in Section 6.1, and then making a TLS/TCP connection to it.

After making the TLS/TCP connection to the server, a typical DNS Push Notification client will
then immediately issue a DSO Keepalive operation to establish the DSO session and request a
session timeout and/or keepalive interval longer than the 15-second default values, but this is not
required. A DNS Push Notification client  issue other requests on the session first, and only
issue a DSO Keepalive operation later if it determines that to be necessary. Sending either a DSO
Keepalive operation or a Push Notification subscription request over the TLS/TCP connection to
the server signals the client's support of DSO and serves to establish a DSO session.

In accordance with the current set of active subscriptions, the server sends relevant
asynchronous Push Notifications to the client. Note that a client  be prepared to receive
(and silently ignore) Push Notifications for subscriptions it has previously removed, since there is
no way to prevent the situation where a Push Notification is in flight from server to client while
the client's UNSUBSCRIBE message canceling that subscription is simultaneously in flight from
client to server.

[RFC8684] [RFC7413]
[TCPRACK]

[RFC8446]

REQUIRED

[RFC8490]

[RFC8490]

MUST

MAY

MUST

6.1. Discovery 
The first step in establishing a DNS Push Notification subscription is to discover an appropriate
DNS server that supports DNS Push Notifications for the desired zone.

The client begins by opening a DSO session to its normal configured DNS recursive resolver and
requesting a Push Notification subscription. This connection is made to TCP port 853, the default
port for DNS over TLS . If the request for a Push Notification subscription is successful,[RFC7858]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 7



and the recursive resolver doesn't already have an active subscription for that name, type, and
class, then the recursive resolver will make a corresponding Push Notification subscription on
the client's behalf. Results received are relayed to the client. This is closely analogous to how a
client sends a normal DNS query to its configured DNS recursive resolver, which, if it doesn't
already have appropriate answer(s) in its cache, issues an upstream query to satisfy the request.

In many contexts, the recursive resolver will be able to handle Push Notifications for all names
that the client may need to follow. Use of VPN tunnels and Private DNS  can create
some additional complexity in the client software here; the techniques to handle VPN tunnels
and Private DNS for DNS Push Notifications are the same as those already used to handle this for
normal DNS queries.

If the recursive resolver does not support DNS over TLS, or supports DNS over TLS but is not
listening on TCP port 853, or supports DNS over TLS on TCP port 853 but does not support DSO on
that port, then the DSO session establishment will fail .

If the recursive resolver does support DSO on TCP port 853 but does not support Push
Notification subscriptions, then when the client attempts to create a subscription, the server will
return the DSO error code DSOTYPENI (11).

In some cases, the recursive resolver may support DSO and Push Notification subscriptions but
may not be able to subscribe for Push Notifications for a particular name. In this case, the
recursive resolver should return SERVFAIL to the client. This includes being unable to establish a
connection to the zone's DNS Push Notification server or establishing a connection but receiving
a non-success response code. In some cases, where the client has a pre-established trust
relationship with the owner of the zone (that is not handled via the usual mechanisms for VPN
software), the client may handle these failures by contacting the zone's DNS Push Notification
server directly.

In any of the cases described above where the client fails to establish a DNS Push Notification
subscription via its configured recursive resolver, the client should proceed to discover the
appropriate server for direct communication. The client  also determine on which TCP port
the server is listening for connections, which need not be, and often is not, TCP port 53
(traditionally used for conventional DNS) or TCP port 853 (traditionally used for DNS over TLS).

The discovery algorithm described here is an iterative algorithm, which starts with the full name
of the record to which the client wishes to subscribe. Successive SOA queries are then issued,
trimming one label each time, until the closest enclosing authoritative server is discovered.
There is also an optimization to enable the client to take a "short cut" directly to the SOA record
of the closest enclosing authoritative server in many cases.

The client begins the discovery by sending a DNS query to its local resolver, with record type
SOA  for the record name to which it wishes to subscribe. As an example, suppose
the client wishes to subscribe to PTR records with the name 
_ipp._tcp.headoffice.example.com (to discover Internet Printing Protocol (IPP) printers 

  being advertised in the head office of Example Company). The client
begins by sending an SOA query for _ipp._tcp.headoffice.example.com to the local

[RFC8499]

[RFC8490]

MUST

1. 
[RFC1035]

[RFC8010] [RFC8011]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 8



recursive resolver. The goal is to determine the server that is authoritative for the name 
_ipp._tcp.headoffice.example.com. The closest enclosing DNS zone containing the name 
_ipp._tcp.headoffice.example.com could be example.com, or headoffice.example.com,
or _tcp.headoffice.example.com, or even _ipp._tcp.headoffice.example.com. The
client does not know in advance where the closest enclosing zone cut occurs, which is why it
uses the iterative procedure described here to discover this information. 
If the requested SOA record exists, it will be returned in the Answer Section with a NOERROR
response code, and the client has succeeded in discovering the information it needs.

(This language is not placing any new requirements on DNS recursive resolvers. This text
merely describes the existing operation of the DNS protocol  .)

If the requested SOA record does not exist, the client will get back a NOERROR/NODATA
response or an NXDOMAIN/Name Error response. In either case, the local resolver would
normally include the SOA record for the closest enclosing zone of the requested name in the
Authority Section. If the SOA record is received in the Authority Section, then the client has
succeeded in discovering the information it needs.

(This language is not placing any new requirements on DNS recursive resolvers. This text
merely describes the existing operation of the DNS protocol regarding negative responses 

.)

If the client receives a response containing no SOA record, then it proceeds with the iterative
approach. The client strips the leading label from the current query name, and if the
resulting name has at least two labels in it, then the client sends an SOA query for that new
name and processing continues at step 2 above, repeating the iterative search until either an
SOA is received or the query name consists of a single label, i.e., a Top-Level Domain (TLD).
In the case of a single-label name (TLD), this is a network configuration error, which should
not happen, and the client gives up. The client may retry the operation at a later time of the
client's choosing, such as after a change in network attachment. 
Once the SOA is known (by virtue of being seen either in the Answer Section or in the
Authority Section), the client sends a DNS query with type SRV  for the record
name _dns‑push‑tls._tcp.<zone>, where <zone> is the owner name of the discovered SOA
record. 
If the zone in question is set up to offer DNS Push Notifications, then this SRV record 
exist. (If this SRV record does not exist, then the zone is not correctly configured for DNS
Push Notifications as specified in this document.) The SRV target contains the name of the
server providing DNS Push Notifications for the zone. The port number on which to contact
the server is in the SRV record port field. The address(es) of the target host  be included
in the Additional Section, however, the address records  be authenticated before use
as described in Section 7.2 and in the specification for using DNS-Based Authentication of
Named Entities (DANE) TLSA Records with SRV Records , if applicable. 

2. 

[RFC1034] [RFC1035]

3. 

[RFC2308]

4. 

5. 
[RFC2782]

6. MUST

MAY
SHOULD

[RFC7673]
More than one SRV record may be returned. In this case, the priority and weight values in
the returned SRV records are used to determine the order in which to contact the servers for
subscription requests. As described in the SRV specification , the server with the
lowest priority is first contacted. If more than one server has the same priority, the 

7. 

[RFC2782]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 9



Each time a client makes a new DNS Push Notification subscription, it  repeat the
discovery process in order to determine the preferred DNS server for that subscription at that
time. If a client already has a DSO session with that DNS server, the client  reuse that
existing DSO session for the new subscription; otherwise, a new DSO session is established. The
client  respect the DNS TTL values on records it receives while performing the discovery
process and store them in its local cache with this lifetime (as it will generally do anyway for all
DNS queries it performs). This means that, as long as the DNS TTL values on the authoritative
records are set to reasonable values, repeated application of the discovery process can be
completed practically instantaneously by the client, using only locally stored cached data.

weight indicates the weighted probability that the client should contact that server. Higher
weights have higher probabilities of being selected. If a server is not willing to accept a
subscription request, or is not reachable within a reasonable time, as determined by the
client, then a subsequent server is to be contacted. 

SHOULD

SHOULD

MUST

6.2. DNS Push Notification SUBSCRIBE 
After connecting, and requesting a longer idle timeout and/or keepalive interval if necessary, a
DNS Push Notification client then indicates its desire to receive DNS Push Notifications for a
given domain name by sending a SUBSCRIBE request to the server. A SUBSCRIBE request is
encoded in a DSO message . This specification defines a DSO Primary TLV for DNS Push
Notification SUBSCRIBE Requests (DSO Type Code 0x0040).

DSO messages with the SUBSCRIBE TLV as the Primary TLV are permitted in TLS early data,
provided that the precautions described in Section 7.3 are followed.

The entity that initiates a SUBSCRIBE request is by definition the client. A server  send
a SUBSCRIBE request over an existing session from a client. If a server does send a SUBSCRIBE
request over a DSO session initiated by a client, this is a fatal error and the client  forcibly
abort the connection immediately.

Each SUBSCRIBE request generates exactly one SUBSCRIBE response from the server. The entity
that initiates a SUBSCRIBE response is by definition the server. A client  send a
SUBSCRIBE response. If a client does send a SUBSCRIBE response, this is a fatal error and the
server  forcibly abort the connection immediately.

6.2.1. SUBSCRIBE Request 

A SUBSCRIBE request begins with the standard DSO 12-byte header , followed by the
SUBSCRIBE Primary TLV. A SUBSCRIBE request is illustrated in Figure 1.

The MESSAGE ID field  be set to a unique value that the client is not using for any other
active operation on this DSO session. For the purposes here, a MESSAGE ID is in use on this
session if either the client has used it in a request for which it has not yet received a response, or
if the client has used it for a subscription that it has not yet canceled using UNSUBSCRIBE. In the
SUBSCRIBE response, the server  echo back the MESSAGE ID value unchanged.

[RFC8490]

MUST NOT

MUST

MUST NOT

MUST

[RFC8490]

MUST

MUST

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 10



The other header fields  be set as described in the . The DNS
OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields
must be zero, and the corresponding four sections must be empty (i.e., absent).

The DSO-TYPE is SUBSCRIBE (0x0040).

The DSO-LENGTH is the length of the DSO-DATA that follows, which specifies the name, type, and
class of the record(s) being sought.

The DSO-DATA for a SUBSCRIBE request  contain exactly one NAME, TYPE, and CLASS. Since
SUBSCRIBE requests are sent over TCP, multiple SUBSCRIBE DSO request messages can be
concatenated in a single TCP stream and packed efficiently into TCP segments.

If accepted, the subscription will stay in effect until the client cancels the subscription using
UNSUBSCRIBE or until the DSO session between the client and the server is closed.

SUBSCRIBE requests on a given session  be unique. A client  send a SUBSCRIBE
message that duplicates the name, type and class of an existing active subscription on that DSO
session. For the purpose of this matching, the established DNS case insensitivity for US-ASCII
letters  applies (e.g., "example.com" and "Example.com" are the same). If a server
receives such a duplicate SUBSCRIBE message, this is a fatal error and the server  forcibly
abort the connection immediately.

MUST DSO specification [RFC8490]

Figure 1: SUBSCRIBE Request 

                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |                  MESSAGE ID                   |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |         DSO-TYPE = SUBSCRIBE (0x0040)         |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |   DSO-LENGTH (number of octets in DSO-DATA)   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   \                     NAME                      \   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     TYPE                      |     > DSO-DATA
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     CLASS                     |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

MUST

MUST MUST NOT

[RFC0020]
MUST

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 11



DNS wildcarding is not supported. That is, an asterisk character ("*") in a SUBSCRIBE message
matches only a literal asterisk character ("*") in a name and nothing else. Similarly, a CNAME in a
SUBSCRIBE message matches only a CNAME record with that name in the zone and no other
records with that name.

A client may SUBSCRIBE to records that are unknown to the server at the time of the request
(providing that the name falls within one of the zone(s) the server is responsible for), and this is
not an error. The server  return NXDOMAIN in this case. The server  accept these
requests and send Push Notifications if and when matching records are found in the future.

If neither TYPE nor CLASS are ANY (255), then this is a specific subscription to changes for the
given name, type, and class. If one or both of TYPE or CLASS are ANY (255), then this subscription
matches all types and/or all classes as appropriate.

NOTE: A little-known quirk of DNS is that in DNS QUERY requests, QTYPE and QCLASS 255 mean
"ANY", not "ALL". They indicate that the server should respond with ANY matching records of its
choosing, not necessarily ALL matching records. This can lead to some surprising and
unexpected results, where a query returns some valid answers, but not all of them, and makes
QTYPE = 255 (ANY) queries less useful than people sometimes imagine.

When used in conjunction with SUBSCRIBE, TYPE 255 and CLASS 255 should be interpreted to
mean "ALL", not "ANY". After accepting a subscription where one or both of TYPE or CLASS are
255, the server  send Push Notification Updates for ALL record changes that match the
subscription, not just some of them.

MUST NOT MUST

MUST

6.2.2. SUBSCRIBE Response 

A SUBSCRIBE response begins with the standard DSO 12-byte header . The QR bit in the
header is set indicating it is a response. The header  be followed by one or more optional
Additional TLVs such as a Retry Delay Additional TLV. A SUBSCRIBE response is illustrated in 
Figure 2.

The MESSAGE ID field  echo the value given in the MESSAGE ID field of the SUBSCRIBE
request. This is how the client knows which request is being responded to.

The other header fields  be set as described in the . The DNS
OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields
must be zero, and the corresponding four sections must be empty (i.e., absent).

A SUBSCRIBE response message  include a SUBSCRIBE TLV. If a client receives a
SUBSCRIBE response message containing a SUBSCRIBE TLV, then the response message is
processed but the SUBSCRIBE TLV  be silently ignored.

[RFC8490]
MAY

MUST

MUST DSO specification [RFC8490]

MUST NOT

MUST

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 12



In the SUBSCRIBE response, the RCODE indicates whether or not the subscription was accepted.
Supported RCODEs are as follows:

This document specifies only these RCODE values for SUBSCRIBE Responses. Servers sending
SUBSCRIBE Responses  use one of these values. Note that NXDOMAIN is not a valid
RCODE in response to a SUBSCRIBE Request. However, future circumstances may create
situations where other RCODE values are appropriate in SUBSCRIBE Responses, so clients 
be prepared to accept and handle SUBSCRIBE Responses with any other nonzero RCODE error
values.

If the server sends a nonzero RCODE in the SUBSCRIBE response, that means:

the client is (at least partially) misconfigured, or 
the server resources are exhausted, or 

Figure 2: SUBSCRIBE Response 

                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |                  MESSAGE ID                   |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

Mnemonic Value Description

NOERROR 0 SUBSCRIBE successful.

FORMERR 1 Server failed to process request due to a malformed request.

SERVFAIL 2 Server failed to process request due to a problem with the server.

NOTIMP 4 Server does not implement DSO.

REFUSED 5 Server refuses to process request for policy or security reasons.

NOTAUTH 9 Server is not authoritative for the requested name.

DSOTYPENI 11 SUBSCRIBE operation not supported.

Table 1: SUBSCRIBE Response Codes 

SHOULD

MUST

a. 
b. 

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 13



there is some other unknown failure on the server. 

In any case, the client shouldn't retry the subscription to this server right away. If multiple SRV
records were returned as described in Section 6.1, Paragraph 9, Item 7, a subsequent server 
be tried immediately.

If the client has other successful subscriptions to this server, these subscriptions remain even
though additional subscriptions may be refused. Neither the client nor the server is required to
close the connection, although either end may choose to do so.

If the server sends a nonzero RCODE, then it  append a Retry Delay Additional TLV 
 to the response specifying a delay before the client attempts this operation again.

Recommended values for the delay for different RCODE values are given below. These
recommended values apply both to the default values a server should place in the Retry Delay
Additional TLV and the default values a client should assume if the server provides no Retry
Delay Additional TLV.

For RCODE = 1 (FORMERR), the delay may be any value selected by the implementer. A value
of five minutes is  to reduce the risk of high load from defective clients. 

For RCODE = 2 (SERVFAIL), the delay should be chosen according to the level of server
overload and the anticipated duration of that overload. By default, a value of one minute is 

. If a more serious server failure occurs, the delay may be longer in
accordance with the specific problem encountered. 

For RCODE = 4 (NOTIMP), which occurs on a server that doesn't implement DNS Stateful
Operations , it is unlikely that the server will begin supporting DSO in the next few
minutes, so the retry delay  be one hour. Note that in such a case, a server that
doesn't implement DSO is unlikely to place a Retry Delay Additional TLV in its response, so
this recommended value in particular applies to what a client should assume by default. 

For RCODE = 5 (REFUSED), which occurs on a server that implements DNS Push Notifications
but is currently configured to disallow DNS Push Notifications, the retry delay may be any
value selected by the implementer and/or configured by the operator. 

If the server being queried is listed in a _dns‑push‑tls._tcp.<zone> SRV record for the
zone, then this is a misconfiguration, since this server is being advertised as supporting DNS
Push Notifications for this zone, but the server itself is not currently configured to perform
that task. Since it is possible that the misconfiguration may be repaired at any time, the retry
delay should not be set too high. By default, a value of 5 minutes is . 

For RCODE = 9 (NOTAUTH), which occurs on a server that implements DNS Push
Notifications but is not configured to be authoritative for the requested name, the retry delay
may be any value selected by the implementer and/or configured by the operator. 

If the server being queried is listed in a _dns‑push‑tls._tcp.<zone> SRV record for the
zone, then this is a misconfiguration, since this server is being advertised as supporting DNS
Push Notifications for this zone, but the server itself is not currently configured to perform
that task. Since it is possible that the misconfiguration may be repaired at any time, the retry
delay should not be set too high. By default, a value of 5 minutes is . 

c. 

MAY

SHOULD
[RFC8490]

RECOMMENDED

RECOMMENDED

[RFC8490]
SHOULD

RECOMMENDED

RECOMMENDED

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 14



For RCODE = 11 (DSOTYPENI), which occurs on a server that implements DSO but doesn't
implement DNS Push Notifications, it is unlikely that the server will begin supporting DNS
Push Notifications in the next few minutes, so the retry delay  be one hour. 

For other RCODE values, the retry delay should be set by the server as appropriate for that
error condition. By default, a value of 5 minutes is . 

For RCODE = 9 (NOTAUTH), the time delay applies to requests for other names falling within the
same zone. Requests for names falling within other zones are not subject to the delay. For all
other RCODEs, the time delay applies to all subsequent requests to this server.

After sending an error response, the server  allow the session to remain open, or  follow
it with a DSO Retry Delay operation (using the Retry Delay Primary TLV) instructing the client to
close the session as described in the . Clients  correctly handle
both cases. Note that the DSO Retry Delay operation (using the Retry Delay Primary TLV) is
different to the Retry Delay Additional TLV mentioned above.

SHOULD

RECOMMENDED

MAY MAY

DSO specification [RFC8490] MUST

6.3. DNS Push Notification Updates 
Once a subscription has been successfully established, the server generates PUSH messages to
send to the client as appropriate. In the case that the answer set was already non-empty at the
moment the subscription was established, an initial PUSH message will be sent immediately
following the SUBSCRIBE Response. Subsequent changes to the answer set are then
communicated to the client in subsequent PUSH messages.

A client  send a PUSH message. If a client does send a PUSH message, or a PUSH
message is sent with the QR bit set indicating that it is a response, this is a fatal error and the
receiver  forcibly abort the connection immediately.

6.3.1. PUSH Message 

A PUSH unidirectional message begins with the standard DSO 12-byte header ,
followed by the PUSH Primary TLV. A PUSH message is illustrated in Figure 3.

In accordance with the definition of DSO unidirectional messages, the MESSAGE ID field  be
zero. There is no client response to a PUSH message.

The other header fields  be set as described in the DSO specification . The DNS
OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields
must be zero, and the corresponding four sections must be empty (i.e., absent).

The DSO-TYPE is PUSH (0x0041).

The DSO-LENGTH is the length of the DSO-DATA that follows, which specifies the changes being
communicated.

The DSO-DATA contains one or more change notifications. A PUSH Message  contain at least
one change notification. If a PUSH Message is received that contains no change notifications, this
is a fatal error and the client  forcibly abort the connection immediately.

MUST NOT

MUST

[RFC8490]

MUST

MUST [RFC8490]

MUST

MUST

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 15



The change notification records are formatted similarly to how DNS Resource Records are
conventionally expressed in DNS messages, as illustrated in Figure 3, and are interpreted as
described below.

The TTL field holds an unsigned 32-bit integer . If the TTL is in the range 0 to
2,147,483,647 seconds (0 to 231 - 1, or 0x7FFFFFFF), then a new DNS Resource Record with the
given name, type, class, and RDATA is added. Type and class  be 255 (ANY). If either
type or class are 255 (ANY), this is a fatal error and the client  forcibly abort the connection
immediately. A TTL of 0 means that this record should be retained for as long as the subscription
is active and should be discarded immediately the moment the subscription is canceled.

If the TTL has the value 0xFFFFFFFF, then the DNS Resource Record with the given name, type,
class, and RDATA is removed. Type and class  be 255 (ANY). If either type or class are
255 (ANY), this is a fatal error and the client  forcibly abort the connection immediately.

If the TTL has the value 0xFFFFFFFE, then this is a 'collective' remove notification. For collective
remove notifications, RDLEN  be zero, and consequently, the RDATA  be empty. If a
change notification is received where TTL = 0xFFFFFFFE and RDLEN is not zero, this is a fatal
error and the client  forcibly abort the connection immediately.

There are three types of collective remove notification. For collective remove notifications:

If CLASS is not 255 (ANY) and TYPE is not 255 (ANY), then for the given name, this removes
all records of the specified type in the specified class. 
If CLASS is not 255 (ANY) and TYPE is 255 (ANY), then for the given name, this removes all
records of all types in the specified class. 
If CLASS is 255 (ANY), then for the given name, this removes all records of all types in all
classes. In this case, TYPE  be set to zero on transmission and  be silently ignored
on reception. 

Summary of change notification types:

Remove all RRsets from a name in all classes:
TTL = 0xFFFFFFFE, RDLEN = 0, CLASS = 255 (ANY).

Remove all RRsets from a name in given class:
TTL = 0xFFFFFFFE, RDLEN = 0, CLASS gives class, TYPE = 255 (ANY).

Remove specified RRset from a name in given class:
TTL = 0xFFFFFFFE, RDLEN = 0,
CLASS and TYPE specify the RRset being removed.

Remove an individual RR from a name:
TTL = 0xFFFFFFFF,
CLASS, TYPE, RDLEN, and RDATA specify the RR being removed.

[RFC2181]

MUST NOT
MUST

MUST NOT
MUST

MUST MUST

MUST

• 

• 

• 
MUST MUST

• 

• 

• 

• 

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 16



Add individual RR to a name:
TTL >= 0 and TTL <= 0x7FFFFFFF,
CLASS, TYPE, RDLEN, RDATA, and TTL specify the RR being added.

Note that it is valid for the RDATA of an added or removed DNS Resource Record to be empty
(zero length). For example, an Address Prefix List Resource Record  may have empty
RDATA. Therefore, a change notification with RDLEN = 0 does not automatically indicate a
remove notification. If RDLEN = 0 and TTL is in the range 0 to 0x7FFFFFFF, this change
notification signals the addition of a record with the given name, type, class, and empty RDATA. If
RDLEN = 0 and TTL = 0xFFFFFFFF, this change notification signals the removal specifically of that
single record with the given name, type, class, and empty RDATA.

If the TTL is any value other than 0xFFFFFFFF, 0xFFFFFFFE, or a value in the range 0 to
0x7FFFFFFF, then the receiver  silently ignore this particular change notification record.
The connection is not terminated and other valid change notification records within this PUSH
message are processed as usual.

In the case where a single change affects more than one active subscription, only one PUSH
message is sent. For example, a PUSH message adding a given record may match both a
SUBSCRIBE request with the same TYPE and a different SUBSCRIBE request with TYPE = 255
(ANY). It is not the case that two PUSH messages are sent because the new record matches two
active subscriptions.

The server  encode change notifications in the most efficient manner possible. For
example, when three AAAA records are removed from a given name, and no other AAAA records
exist for that name, the server  send a "Remove specified RRset from a name in given
class" PUSH message, not three separate "Remove an individual RR from a name" PUSH
messages. Similarly, when both an SRV and a TXT record are removed from a given name, and no
other records of any kind exist for that name in that class, the server  send a "Remove all
RRsets from a name in given class" PUSH message, not two separate "Remove specified RRset
from a name in given class" PUSH messages.

For efficiency, when generating a PUSH message, rather than sending each change notification as
a separate DSO message, a server  include as many change notifications as it has
immediately available to send to that client, even if those change notifications apply to different
subscriptions from that client. Conceptually, a PUSH message is a session-level mechanism, not a
subscription-level mechanism. Once it has exhausted the list of change notifications immediately
available to send to that client, a server  then send the PUSH message immediately rather
than waiting speculatively to see if additional change notifications become available.

For efficiency, when generating a PUSH message a server  use standard DNS name
compression, with offsets relative to the beginning of the DNS message . When multiple
change notifications in a single PUSH message have the same owner name, this name
compression can yield significant savings. Name compression should be performed as specified
in ; namely, owner names should
always be compressed, and names appearing within RDATA should be compressed for only the
RR types listed below:

• 

[RFC3123]

SHOULD

SHOULD

SHOULD

SHOULD

SHOULD

SHOULD

SHOULD
[RFC1035]

Section 18.14 of the Multicast DNS specification [RFC6762]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc6762#section-18.14


NS, CNAME, PTR, DNAME, SOA, MX, AFSDB, RT, KX, RP, PX, SRV, NSEC 

Servers may generate PUSH messages up to a maximum DNS message length of 16,382 bytes,
counting from the start of the DSO 12-byte header. Including the two-byte length prefix that is
used to frame DNS over a byte stream like TLS, this makes a total of 16,384 bytes. Servers 

 generate PUSH messages larger than this. Where the immediately available change
notifications are sufficient to exceed a DNS message length of 16,382 bytes, the change
notifications  be communicated in separate PUSH messages of up to 16,382 bytes each. DNS
name compression becomes less effective for messages larger than 16,384 bytes, so little
efficiency benefit is gained by sending messages larger than this.

If a client receives a PUSH message with a DNS message length larger than 16,382 bytes, this is a
fatal error and the client  forcibly abort the connection immediately.

MUST
NOT

MUST

MUST

Figure 3: PUSH Message 

                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |           MESSAGE ID (MUST BE ZERO)           |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |            DSO-TYPE = PUSH (0x0041)           |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |   DSO-LENGTH (number of octets in DSO-DATA)   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   \                     NAME                      \   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     TYPE                      |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     CLASS                     |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                      TTL                      |    |
   |     (32-bit unsigned big-endian integer)      |     > DSO-DATA
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |  RDLEN (16-bit unsigned big-endian integer)   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   \           RDATA (sized as necessary)          \    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   :     NAME, TYPE, CLASS, TTL, RDLEN, RDATA      :    |
   :             Repeated As Necessary             :   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 18



When processing the records received in a PUSH Message, the receiving client  validate that
the records being added or removed correspond with at least one currently active subscription
on that session. Specifically, the record name  match the name given in the SUBSCRIBE
request, subject to the usual established DNS case-insensitivity for US-ASCII letters. For
individual additions and removals, if the TYPE in the SUBSCRIBE request was not ANY (255), then
the TYPE of the record must either be CNAME or match the TYPE given in the SUBSCRIBE
request, and if the CLASS in the SUBSCRIBE request was not ANY (255), then the CLASS of the
record must match the CLASS given in the SUBSCRIBE request. For collective removals, at least
one of the records being removed must match an active subscription. If a matching active
subscription on that session is not found, then that particular addition/removal record is silently
ignored. The processing of other additions and removal records in this message is not affected.
The DSO session is not closed. This is to allow for the unavoidable race condition where a client
sends an outbound UNSUBSCRIBE while inbound PUSH messages for that subscription from the
server are still in flight.

The TTL of an added record is stored by the client. While the subscription is active the TTL is not
decremented, because a change to the TTL would produce a new update. For as long as a
relevant subscription remains active, the client  assume that when a record goes away,
the server will notify it of that fact. Consequently, a client does not have to poll to verify that the
record is still there. Once a subscription is canceled (individually, or as a result of the DSO session
being closed), record aging for records covered by the subscription resumes and records are
removed from the local cache when their TTL reaches zero.

MUST

MUST

SHOULD

6.4. DNS Push Notification UNSUBSCRIBE 
To cancel an individual subscription without closing the entire DSO session, the client sends an
UNSUBSCRIBE message over the established DSO session to the server.

The entity that initiates an UNSUBSCRIBE message is by definition the client. A server 
send an UNSUBSCRIBE message over an existing session from a client. If a server does send an
UNSUBSCRIBE message over a DSO session initiated by a client, or an UNSUBSCRIBE message is
sent with the QR bit set indicating that it is a response, this is a fatal error and the receiver 
forcibly abort the connection immediately.

6.4.1. UNSUBSCRIBE Message 

An UNSUBSCRIBE unidirectional message begins with the standard DSO 12-byte header 
, followed by the UNSUBSCRIBE Primary TLV. An UNSUBSCRIBE message is illustrated

in Figure 4.

In accordance with the definition of DSO unidirectional messages, the MESSAGE ID field  be
zero. There is no server response to an UNSUBSCRIBE message.

The other header fields  be set as described in the . The DNS
OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields
must be zero, and the corresponding four sections must be empty (i.e., absent).

The DSO-TYPE is UNSUBSCRIBE (0x0042).

MUST NOT

MUST

[RFC8490]

MUST

MUST DSO specification [RFC8490]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 19



The DSO-LENGTH field contains the value 2, the length of the 2-octet MESSAGE ID contained in
the DSO-DATA.

The DSO-DATA contains the value previously given in the MESSAGE ID field of an active
SUBSCRIBE request. This is how the server knows which SUBSCRIBE request is being canceled.
After receipt of the UNSUBSCRIBE message, the SUBSCRIBE request is no longer active.

It is allowable for the client to issue an UNSUBSCRIBE message for a previous SUBSCRIBE request
for which the client has not yet received a SUBSCRIBE response. This is to allow for the case
where a client starts and stops a subscription in less than the round-trip time to the server. The
client is NOT required to wait for the SUBSCRIBE response before issuing the UNSUBSCRIBE
message.

Consequently, it is possible for a server to receive an UNSUBSCRIBE message that does not match
any currently active subscription. This can occur when a client sends a SUBSCRIBE request,
which subsequently fails and returns an error code, but the client sent an UNSUBSCRIBE
message before it became aware that the SUBSCRIBE request had failed. Because of this, servers 

 silently ignore UNSUBSCRIBE messages that do not match any currently active
subscription.
MUST

Figure 4: UNSUBSCRIBE Message 

                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |           MESSAGE ID (MUST BE ZERO)           |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |         DSO-TYPE = UNSUBSCRIBE (0x0042)       |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                DSO-LENGTH (2)                 |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |              SUBSCRIBE MESSAGE ID             |   > DSO-DATA
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

6.5. DNS Push Notification RECONFIRM 
Sometimes, particularly when used with a Discovery Proxy , a DNS Zone may contain
stale data. When a client encounters data that it believes may be stale (e.g., an SRV record
referencing a target host+port that is not responding to connection requests), the client can send
a RECONFIRM message to ask the server to re-verify that the data is still valid. For a Discovery

[RFC8766]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 20



Proxy, this causes it to issue new Multicast DNS queries to ascertain whether the target device is
still present. How the Discovery Proxy causes these new Multicast DNS queries to be issued
depends on the details of the underlying Multicast DNS implementation being used. For example,
a Discovery Proxy built on Apple's dns_sd.h API  responds to a DNS Push Notification
RECONFIRM message by calling the underlying API's DNSServiceReconfirmRecord() routine.

For other types of DNS server, the RECONFIRM operation is currently undefined and 
result in a NOERROR response, but it need not cause any other action to occur.

Frequent use of RECONFIRM operations may be a sign of network unreliability, or some kind of
misconfiguration, so RECONFIRM operations  be logged or otherwise communicated to a
human administrator to assist in detecting and remedying such network problems.

If, after receiving a valid RECONFIRM message, the server determines that the disputed records
are in fact no longer valid, then subsequent DNS PUSH Messages will be generated to inform
interested clients. Thus, one client discovering that a previously advertised device (like a
network printer) is no longer present has the side effect of informing all other interested clients
that the device in question is now gone.

The entity that initiates a RECONFIRM message is by definition the client. A server 
send a RECONFIRM message over an existing session from a client. If a server does send a
RECONFIRM message over a DSO session initiated by a client, or a RECONFIRM message is sent
with the QR bit set indicating that it is a response, this is a fatal error and the receiver 
forcibly abort the connection immediately.

6.5.1. RECONFIRM Message 

A RECONFIRM unidirectional message begins with the standard DSO 12-byte header ,
followed by the RECONFIRM Primary TLV. A RECONFIRM message is illustrated in Figure 5.

In accordance with the definition of DSO unidirectional messages, the MESSAGE ID field  be
zero. There is no server response to a RECONFIRM message.

The other header fields  be set as described in the . The DNS
OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields
must be zero, and the corresponding four sections must be empty (i.e., absent).

The DSO-TYPE is RECONFIRM (0x0043).

The DSO-LENGTH is the length of the data that follows, which specifies the name, type, class, and
content of the record being disputed.

A DNS Push Notifications RECONFIRM message contains exactly one RECONFIRM Primary TLV.
The DSO-DATA in a RECONFIRM Primary TLV  contain exactly one record. The DSO-DATA in
a RECONFIRM Primary TLV has no count field to specify more than one record. Since
RECONFIRM messages are sent over TCP, multiple RECONFIRM messages can be concatenated in
a single TCP stream and packed efficiently into TCP segments. Note that this means that DNS
name compression cannot be used between different RECONFIRM messages. However, when a

[SD-API]

SHOULD

MAY

MUST NOT

MUST

[RFC8490]

MUST

MUST DSO specification [RFC8490]

MUST

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 21



client is sending multiple RECONFIRM messages this indicates a situation with serious network
problems, and this is not expected to occur frequently enough that optimizing efficiency in this
case is important.

TYPE  be the value ANY (255) and CLASS  be the value ANY (255).

DNS wildcarding is not supported. That is, an asterisk character ("*") in a RECONFIRM message
matches only a literal asterisk character ("*") in a name and nothing else. Similarly, a CNAME in a
RECONFIRM message matches only a CNAME record with that name in the zone and no other
records with that name.

Note that there is no RDLEN field, since the length of the RDATA can be inferred from DSO-
LENGTH, so an additional RDLEN field would be redundant.

Following the same rules as for PUSH messages, DNS name compression SHOULD be used within
the RDATA of the RECONFIRM message, with offsets relative to the beginning of the DNS message 

.

MUST NOT MUST NOT

[RFC1035]

Figure 5: RECONFIRM Message 

                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |           MESSAGE ID (MUST BE ZERO)           |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |         DSO-TYPE = RECONFIRM (0x0043)         |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |   DSO-LENGTH (number of octets in DSO-DATA)   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   \                     NAME                      \   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     TYPE                      |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > DSO-DATA
   |                     CLASS                     |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   \                     RDATA                     \   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 22



C-P:
C-U:
C-A:
CRP:
CRA:

S-P:
S-U:
S-A:
SRP:
SRA:

6.6. DNS Stateful Operations TLV Context Summary 
This document defines four new DSO TLVs. As recommended in 

, the valid contexts of these new TLV types are summarized
below.

The client TLV contexts are:

Client request message, Primary TLV 
Client Unidirectional message, primary TLV 
Client request or unidirectional message, Additional TLV 
Response back to client, Primary TLV 
Response back to client, Additional TLV 

The server TLV contexts are:

Server request message, Primary TLV 
Server Unidirectional message, primary TLV 
Server request or unidirectional message, Additional TLV 
Response back to server, Primary TLV 
Response back to server, Additional TLV 

Section 8.2 of the DNS Stateful
Operations specification [RFC8490]

TLV Type C-P C-U C-A CRP CRA

SUBSCRIBE X

PUSH

UNSUBSCRIBE X

RECONFIRM X

Table 2: DSO TLV Client Context Summary 

TLV Type S-P S-U S-A SRP SRA

SUBSCRIBE

PUSH X

UNSUBSCRIBE

RECONFIRM

Table 3: DSO TLV Server Context Summary 

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc8490#section-8.2


6.7. Client-Initiated Termination 
An individual subscription is terminated by sending an UNSUBSCRIBE TLV for that specific
subscription, or all subscriptions can be canceled at once by the client closing the DSO session.
When a client terminates an individual subscription (via UNSUBSCRIBE) or all subscriptions on
that DSO session (by ending the session), it is signaling to the server that it is no longer interested
in receiving those particular updates. It is informing the server that the server may release any
state information it has been keeping with regards to these particular subscriptions.

After terminating its last subscription on a session via UNSUBSCRIBE, a client  close the
session immediately or it may keep it open if it anticipates performing further operations on that
session in the future. If a client wishes to keep an idle session open, it  respect the
maximum idle time required by the server .

If a client plans to terminate one or more subscriptions on a session and doesn't intend to keep
that session open, then as an efficiency optimization, it  instead choose to simply close the
session, which implicitly terminates all subscriptions on that session. This may occur because the
client computer is being shut down, is going to sleep, the application requiring the subscriptions
has terminated, or simply because the last active subscription on that session has been canceled.

When closing a session, a client should perform an orderly close of the TLS session. Typical APIs
will provide a session close method that will send a TLS close_notify alert as described in 

. This instructs the recipient that the sender will not
send any more data over the session. After sending the TLS close_notify alert, the client 
gracefully close the underlying connection using a TCP FIN so that the TLS close_notify is reliably
delivered. The mechanisms for gracefully closing a TCP connection with a TCP FIN vary
depending on the networking API. For example, in the BSD Sockets API, sending a TCP FIN is
achieved by calling "shutdown(s,SHUT_WR)" and keeping the socket open until all remaining
data has been read from it.

If the session is forcibly closed at the TCP level by sending a RST from either end of the
connection, data may be lost.

MAY

MUST
[RFC8490]

MAY

Section
6.1 of the TLS 1.3 specification [RFC8446]

MUST

6.8. Client Fallback to Polling 
There are cases where a client may exhaust all avenues for establishing a DNS Push Notification
subscription without success. This can happen if the client's configured recursive resolver does
not support DNS over TLS, or supports DNS over TLS but is not listening on TCP port 853, or
supports DNS over TLS on TCP port 853 but does not support DSO on that port, or for some other
reason is unable to provide a DNS Push Notification subscription. In this case, the client will
attempt to communicate directly with an appropriate server, and it may be that the zone apex
discovery fails, or there is no _dns‑push‑tls._tcp.<zone> SRV record, or the server indicated
in the SRV record is misconfigured, overloaded, or is unresponsive for some other reason.

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc8446#section-6.1
https://www.rfc-editor.org/rfc/rfc8446#section-6.1


Regardless of the reason for the failure, after being unable to establish the desired DNS Push
Notification subscription, it is likely that the client will still wish to know the answer it seeks,
even if that answer cannot be obtained with the timely change notifications provided by DNS
Push Notifications. In such cases, it is likely that the client will obtain the answer it seeks via a
conventional DNS query instead, repeated at some interval to detect when the answer RRset
changes.

In the case where a client responds to its failure to establish a DNS Push Notification subscription
by falling back to polling with conventional DNS queries instead, the polling rate should be
controlled to avoid placing excessive burden on the server. The interval between successive DNS
queries for the same name, type, and class  be at least the minimum of 900 seconds (15
minutes) or two seconds more than the TTL of the answer RRset.

The reason that for TTLs up to 898 seconds the query should not be reissued until two seconds 
after the answer RRset has expired, is to ensure that the answer RRset has also expired from the
cache on the client's configured recursive resolver. Otherwise (particularly if the clocks on the
client and the recursive resolver do not run at precisely the same rate), there's a risk of a race
condition where the client queries its configured recursive resolver just as the answer RRset has
one second remaining in the recursive resolver's cache. The client would receive a reply telling it
that the answer RRset has one second remaining; the client would then requery the recursive
resolver again one second later. If by this time the answer RRset has actually expired from the
recursive resolver's cache, the recursive resolver would then issue a new query to fetch fresh
data from the authoritative server. Waiting until the answer RRset has definitely expired from
the cache on the client's configured recursive resolver avoids this race condition and any
unnecessary additional queries it causes.

Each time a client is about to reissue its query to discover changes to the answer RRset, it should
first make a new attempt to establish a DNS Push Notification subscription using previously
cached DNS answers as appropriate. After a temporary misconfiguration has been remedied, this
allows a client that is polling to return to using DNS Push Notifications for asynchronous
notification of changes.

SHOULD

7. Security Considerations 
The Strict Privacy profile for DNS over TLS is  for DNS Push Notifications .
Cleartext connections for DNS Push Notifications are not permissible. Since this is a new
protocol, transition mechanisms from the Opportunistic Privacy profile are unnecessary.

Also, see  for additional
recommendations for various versions of TLS usage.

As a consequence of requiring TLS, client certificate authentication and verification may also be
enforced by the server for stronger client-server security or end-to-end security. However,
recommendations for security in particular deployment scenarios are outside the scope of this
document.

REQUIRED [RFC8310]

Section 9 of the document Usage Profiles for DNS over (D)TLS [RFC8310]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc8310#section-9


Confidentiality:

Data integrity protection:

Authentication:

Anti-replay protection:

DNSSEC is  for the authentication of DNS Push Notification servers. TLS alone
does not provide complete security. TLS certificate verification can provide reasonable assurance
that the client is really talking to the server associated with the desired host name, but since the
desired host name is learned via a DNS SRV query, if the SRV query is subverted, then the client
may have a secure connection to a rogue server. DNSSEC can provide added confidence that the
SRV query has not been subverted.

7.1. Security Services 
It is the goal of using TLS to provide the following security services:

All application-layer communication is encrypted with the goal that no party
should be able to decrypt it except the intended receiver. 

Any changes made to the communication in transit are detectable by
the receiver. 

An endpoint of the TLS communication is authenticated as the intended entity
to communicate with. 

TLS provides for the detection of and prevention against messages sent
previously over a TLS connection (such as DNS Push Notifications). If prior messages are
re-sent at a later time as a form of a man-in-the-middle attack, then the receiver will detect
this and reject the replayed messages. 

Deployment recommendations on the appropriate key lengths and cipher suites are beyond the
scope of this document. Please refer to the current TLS Recommendations  for the best
current practices. Keep in mind that best practices only exist for a snapshot in time, and
recommendations will continue to change. Updated versions or errata may exist for these
recommendations.

RECOMMENDED

[BCP195]

7.2. TLS Name Authentication 
As described in Section 6.1, the client discovers the DNS Push Notification server using an SRV
lookup for the record name _dns‑push‑tls._tcp.<zone>. The server connection endpoint 

 then be authenticated using DANE TLSA records for the associated SRV record. This
associates the target's name and port number with a trusted TLS certificate . This
procedure uses the TLS Server Name Indication (SNI) extension  to inform the server
of the name the client has authenticated through the use of TLSA records. Therefore, if the SRV
record passes DNSSEC validation and a TLSA record matching the target name is usable, an SNI
extension must be used for the target name to ensure the client is connecting to the server it has
authenticated. If the target name does not have a usable TLSA record, then the use of the SNI
extension is optional. See Usage Profiles for DNS over TLS and DNS over DTLS  for
more information on authenticating domain names.

SHOULD
[RFC7673]

[RFC6066]

[RFC8310]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 26



7.3. TLS Early Data 
DSO messages with the SUBSCRIBE TLV as the Primary TLV are permitted in TLS early data.
Using TLS early data can save one network round trip and can result in the client obtaining
results faster.

However, there are some factors to consider before using TLS early data.

TLS early data is not forward secret. In cases where forward secrecy of DNS Push Notification
subscriptions is required, the client should not use TLS early data.

With TLS early data, there are no guarantees of non-replay between connections. If packets are
duplicated and delayed in the network, the later arrivals could be mistaken for new subscription
requests. Generally, this is not a major concern since the amount of state generated on the server
for these spurious subscriptions is small and short lived since the TCP connection will not
complete the three-way handshake. Servers  choose to implement rate-limiting measures
that are activated when the server detects an excessive number of spurious subscription
requests.

For further guidance on use of TLS early data, please see discussion of zero round-trip data in
Sections 2.3 and 8, and Appendix E.5, of .

MAY

the TLS 1.3 specification [RFC8446]

7.4. TLS Session Resumption 
TLS session resumption  is permissible on DNS Push Notification servers. However,
closing the TLS connection terminates the DSO session. When the TLS session is resumed, the
DNS Push Notification server will not have any subscription state and will proceed as with any
other new DSO session. Use of TLS session resumption may allow a TLS connection to be set up
more quickly, but the client will still have to recreate any desired subscriptions.

[RFC8446]

8. IANA Considerations 
This document defines a new service name, only applicable for the TCP protocol, which has been
recorded in the IANA "Service Name and Transport Protocol Port Number Registry"  

.

This document defines four new DNS Stateful Operation TLV types, which have been recorded in
the IANA "DSO Type Codes" registry  .

[RFC6335]
[SRVTYPE]

Name Port Value Section

DNS Push Notification Service Type None _dns‑push‑tls._tcp 6.1 

Table 4: IANA Service Type Assignments 

[RFC8490] [DSOTYPE]

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc8446#section-2.3
https://www.rfc-editor.org/rfc/rfc8446#section-8
https://www.rfc-editor.org/rfc/rfc8446#appendix-E.5


[DSOTYPE]

[RFC0020]

[RFC0768]

[RFC0793]

[RFC1034]

[RFC1035]

[RFC1123]

[RFC2119]

[RFC2136]

9. References 

9.1. Normative References 

, , 
. 

, , , , 
, October 1969, . 

, , , , , 
August 1980, . 

, , , , 
, September 1981, . 

, , , , 
, November 1987, . 

, , , 
, , November 1987, 

. 

, , 
, , , October 1989, 

. 

, , , 
, , March 1997, 
. 

, 
, , , April

1997, . 

This document defines no new DNS OPCODEs or RCODEs.

Name Value Early Data Status Section

SUBSCRIBE 0x0040 OK Standards Track 6.2 

PUSH 0x0041 NO Standards Track 6.3 

UNSUBSCRIBE 0x0042 NO Standards Track 6.4 

RECONFIRM 0x0043 NO Standards Track 6.5 

Table 5: IANA DSO TLV Type Code Assignments 

IANA "Domain Name System (DNS) Parameters" <https://www.iana.org/
assignments/dns-parameters/>

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Postel, J. "Transmission Control Protocol" STD 7 RFC 793 DOI 10.17487/
RFC0793 <https://www.rfc-editor.org/info/rfc793>

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI
10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Mockapetris, P. "Domain names - implementation and specification" STD 13
RFC 1035 DOI 10.17487/RFC1035 <https://www.rfc-editor.org/
info/rfc1035>

Braden, R., Ed. "Requirements for Internet Hosts - Application and Support"
STD 3 RFC 1123 DOI 10.17487/RFC1123 <https://www.rfc-
editor.org/info/rfc1123>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound "Dynamic Updates in the
Domain Name System (DNS UPDATE)" RFC 2136 DOI 10.17487/RFC2136

<https://www.rfc-editor.org/info/rfc2136>

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 28

https://www.iana.org/assignments/dns-parameters/
https://www.iana.org/assignments/dns-parameters/
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2136


[RFC2181]

[RFC2782]

[RFC6066]

[RFC6335]

[RFC6895]

[RFC7673]

[RFC7766]

[RFC7858]

[RFC8174]

[RFC8310]

[RFC8446]

[RFC8490]

[SRVTYPE]

, , , 
, July 1997, . 

, 
, , , February 2000, 

. 

, 
, , , January 2011, 

. 

, 

, , ,
, August 2011, . 

, , , 
, , April 2013, 
. 

, 
, , 

, October 2015, . 

, 
, , , 

March 2016, . 

, 
, , 

, May 2016, . 

, , 
, , , May 2017, 

. 

, 
, , , March 2018, 

. 

, , ,
, August 2018, . 

, 
, , , March 2019, 

. 

, , 
. 

Elz, R. and R. Bush "Clarifications to the DNS Specification" RFC 2181 DOI
10.17487/RFC2181 <https://www.rfc-editor.org/info/rfc2181>

Gulbrandsen, A., Vixie, P., and L. Esibov "A DNS RR for specifying the location of
services (DNS SRV)" RFC 2782 DOI 10.17487/RFC2782 <https://
www.rfc-editor.org/info/rfc2782>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S. Cheshire "Internet
Assigned Numbers Authority (IANA) Procedures for the Management of the
Service Name and Transport Protocol Port Number Registry" BCP 165 RFC 6335
DOI 10.17487/RFC6335 <https://www.rfc-editor.org/info/rfc6335>

Eastlake 3rd, D. "Domain Name System (DNS) IANA Considerations" BCP 42
RFC 6895 DOI 10.17487/RFC6895 <https://www.rfc-editor.org/info/
rfc6895>

Finch, T., Miller, M., and P. Saint-Andre "Using DNS-Based Authentication of
Named Entities (DANE) TLSA Records with SRV Records" RFC 7673 DOI
10.17487/RFC7673 <https://www.rfc-editor.org/info/rfc7673>

Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and D. Wessels "DNS Transport
over TCP - Implementation Requirements" RFC 7766 DOI 10.17487/RFC7766

<https://www.rfc-editor.org/info/rfc7766>

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., and P. Hoffman
"Specification for DNS over Transport Layer Security (TLS)" RFC 7858 DOI
10.17487/RFC7858 <https://www.rfc-editor.org/info/rfc7858>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Dickinson, S., Gillmor, D., and T. Reddy "Usage Profiles for DNS over TLS and
DNS over DTLS" RFC 8310 DOI 10.17487/RFC8310 <https://
www.rfc-editor.org/info/rfc8310>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S., Lemon, T., and T. Pusateri
"DNS Stateful Operations" RFC 8490 DOI 10.17487/RFC8490
<https://www.rfc-editor.org/info/rfc8490>

IANA "Service Name and Transport Protocol Port Number Registry" <https://
www.iana.org/assignments/service-names-port-numbers/>

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 29

https://www.rfc-editor.org/info/rfc2181
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc7673
https://www.rfc-editor.org/info/rfc7766
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8310
https://www.rfc-editor.org/info/rfc8310
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8490
https://www.iana.org/assignments/service-names-port-numbers/
https://www.iana.org/assignments/service-names-port-numbers/


[BCP195]

[OBS]

[RFC2308]

[RFC3123]

[RFC4287]

[RFC4953]

[RFC6281]

[RFC6762]

[RFC6763]

[RFC6886]

[RFC6887]

[RFC7413]

[RFC8010]

[RFC8011]

9.2. Informative References 

, 
, 

, , May 2015, . 

, , February 2020, 
. 

, , , 
, March 1998, . 

, , , 
, June 2001, . 

, , ,
, December 2005, 

. 

, , , 
, July 2007, . 

, 
, , , June 2011, 

. 

, , , ,
February 2013, . 

, , , 
, February 2013, . 

, , 
, , April 2013, 

. 

, 
, , , April 2013, 

. 

, , , 
, December 2014, . 

, 
, , , , January 2017, 

. 

, 
, , , , January 2017, 

. 

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 <https://www.rfc-editor.org/info/bcp195>

Wikipedia "Observer pattern" <https://en.wikipedia.org/w/
index.php?title=Observer_pattern&oldid=939702131>

Andrews, M. "Negative Caching of DNS Queries (DNS NCACHE)" RFC 2308 DOI
10.17487/RFC2308 <https://www.rfc-editor.org/info/rfc2308>

Koch, P. "A DNS RR Type for Lists of Address Prefixes (APL RR)" RFC 3123 DOI
10.17487/RFC3123 <https://www.rfc-editor.org/info/rfc3123>

Nottingham, M., Ed. and R. Sayre, Ed. "The Atom Syndication Format" RFC 4287
DOI 10.17487/RFC4287 <https://www.rfc-editor.org/info/
rfc4287>

Touch, J. "Defending TCP Against Spoofing Attacks" RFC 4953 DOI 10.17487/
RFC4953 <https://www.rfc-editor.org/info/rfc4953>

Cheshire, S., Zhu, Z., Wakikawa, R., and L. Zhang "Understanding Apple's Back to
My Mac (BTMM) Service" RFC 6281 DOI 10.17487/RFC6281 <https://
www.rfc-editor.org/info/rfc6281>

Cheshire, S. and M. Krochmal "Multicast DNS" RFC 6762 DOI 10.17487/RFC6762
<https://www.rfc-editor.org/info/rfc6762>

Cheshire, S. and M. Krochmal "DNS-Based Service Discovery" RFC 6763 DOI
10.17487/RFC6763 <https://www.rfc-editor.org/info/rfc6763>

Cheshire, S. and M. Krochmal "NAT Port Mapping Protocol (NAT-PMP)" RFC
6886 DOI 10.17487/RFC6886 <https://www.rfc-editor.org/info/
rfc6886>

Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and P. Selkirk "Port Control
Protocol (PCP)" RFC 6887 DOI 10.17487/RFC6887 <https://www.rfc-
editor.org/info/rfc6887>

Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain "TCP Fast Open" RFC 7413 DOI
10.17487/RFC7413 <https://www.rfc-editor.org/info/rfc7413>

Sweet, M. and I. McDonald "Internet Printing Protocol/1.1: Encoding and
Transport" STD 92 RFC 8010 DOI 10.17487/RFC8010 <https://
www.rfc-editor.org/info/rfc8010>

Sweet, M. and I. McDonald "Internet Printing Protocol/1.1: Model and
Semantics" STD 92 RFC 8011 DOI 10.17487/RFC8011 <https://
www.rfc-editor.org/info/rfc8011>

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 30

https://www.rfc-editor.org/info/bcp195
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=939702131
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=939702131
https://www.rfc-editor.org/info/rfc2308
https://www.rfc-editor.org/info/rfc3123
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4953
https://www.rfc-editor.org/info/rfc6281
https://www.rfc-editor.org/info/rfc6281
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc6886
https://www.rfc-editor.org/info/rfc6886
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc8010
https://www.rfc-editor.org/info/rfc8010
https://www.rfc-editor.org/info/rfc8011
https://www.rfc-editor.org/info/rfc8011


[RFC8499]

[RFC8684]

[RFC8764]

[RFC8766]

[SD-API]

[SYN]

[TCPRACK]

[XEP0060]

, , , 
, , January 2019, 

. 

, 
, , 

, March 2020, . 

, , 
, , June 2020, 

. 

, , 
, , June 2020, 

. 

, , 
. 

, , 
, , , , December 2006, 

. 

, 
, , 

, 9 March 2020, . 

, , , 
October 2019, . 

Hoffman, P., Sullivan, A., and K. Fujiwara "DNS Terminology" BCP 219 RFC
8499 DOI 10.17487/RFC8499 <https://www.rfc-editor.org/info/
rfc8499>

Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C. Paasch "TCP Extensions
for Multipath Operation with Multiple Addresses" RFC 8684 DOI 10.17487/
RFC8684 <https://www.rfc-editor.org/info/rfc8684>

Cheshire, S. and M. Krochmal "Apple's DNS Long-Lived Queries Protocol" RFC
8764 DOI 10.17487/RFC8764 <https://www.rfc-editor.org/info/
rfc8764>

Cheshire, S. "Discovery Proxy for Multicast DNS-Based Service Discovery" RFC
8766 DOI 10.17487/RFC8766 <https://www.rfc-editor.org/info/
rfc8766>

Apple Inc. "dns_sd.h" <https://opensource.apple.com/source/mDNSResponder/
mDNSResponder-878.70.2/mDNSShared/dns_sd.h.auto.html>

Eddy, W. "Defenses Against TCP SYN Flooding Attacks" The Internet Protocol
Journal Cisco Systems Volume 9 Number 4 <https://
www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/ipj_9-4.pdf>

Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha "RACK: a time-based fast loss
detection algorithm for TCP" Work in Progress Internet-Draft, draft-ietf-tcpm-
rack-08 <https://tools.ietf.org/html/draft-ietf-tcpm-rack-08>

Millard, P., Saint-Andre, P., and R. Meijer "Publish-Subscribe" XSF XEP 0060 
<https://xmpp.org/extensions/xep-0060.html>

Acknowledgments 
The authors would like to thank  and  for previous work completed in
this field.

This document has been improved due to comments from , , 
, , , , , , 

, , , , , , 
, , , , , , and 

.  provided clarifying text that was greatly appreciated.

Kiren Sekar Marc Krochmal

Ran Atkinson Tim Chown Sara
Dickinson Mark Delany Ralph Droms Jan Komissar Eric Rescorla Michael Richardson David
Schinazi Manju Shankar Rao Robert Sparks Markus Stenberg Andrew Sullivan Michael Sweet
Dave Thaler Brian Trammell Bernie Volz Éric Vyncke Christopher Wood Liang Xia Soraia
Zlatkovic Ted Lemon

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 31

https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8684
https://www.rfc-editor.org/info/rfc8764
https://www.rfc-editor.org/info/rfc8764
https://www.rfc-editor.org/info/rfc8766
https://www.rfc-editor.org/info/rfc8766
https://opensource.apple.com/source/mDNSResponder/mDNSResponder-878.70.2/mDNSShared/dns_sd.h.auto.html
https://opensource.apple.com/source/mDNSResponder/mDNSResponder-878.70.2/mDNSShared/dns_sd.h.auto.html
https://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/ipj_9-4.pdf
https://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/ipj_9-4.pdf
https://tools.ietf.org/html/draft-ietf-tcpm-rack-08
https://xmpp.org/extensions/xep-0060.html


Authors' Addresses 
Tom Pusateri
Unaffiliated

,   Raleigh NC 27608
United States of America

 +1 919 867 1330 Phone:
 pusateri@bangj.com Email:

Stuart Cheshire
Apple Inc.
One Apple Park Way

,   Cupertino CA 95014
United States of America

 +1 (408) 996-1010 Phone:
 cheshire@apple.com Email:

RFC 8765 DNS Push Notifications June 2020

Pusateri & Cheshire Standards Track Page 32

tel:+1%20919%20867%201330
mailto:pusateri@bangj.com
tel:+1%20(408)%20996-1010
mailto:cheshire@apple.com

	RFC 8765
	DNS Push Notifications
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Fatal Errors

	2. Motivation
	3. Overview
	4. State Considerations
	5. Transport
	6. Protocol Operation
	6.1. Discovery
	6.2. DNS Push Notification SUBSCRIBE
	6.2.1. SUBSCRIBE Request
	6.2.2. SUBSCRIBE Response

	6.3. DNS Push Notification Updates
	6.3.1. PUSH Message

	6.4. DNS Push Notification UNSUBSCRIBE
	6.4.1. UNSUBSCRIBE Message

	6.5. DNS Push Notification RECONFIRM
	6.5.1. RECONFIRM Message

	6.6. DNS Stateful Operations TLV Context Summary
	6.7. Client-Initiated Termination
	6.8. Client Fallback to Polling

	7. Security Considerations
	7.1. Security Services
	7.2. TLS Name Authentication
	7.3. TLS Early Data
	7.4. TLS Session Resumption

	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Authors' Addresses



 
   
   
   
   
     DNS Push Notifications
     
     
       Unaffiliated
       
         
           
           Raleigh
           NC
           27608
           United States of America
        
         +1 919 867 1330
         pusateri@bangj.com
      
    
     
       Apple Inc.
       
         
           One Apple Park Way
           Cupertino
           CA
           95014
           United States of America
        
         +1 (408) 996-1010
         cheshire@apple.com
      
    
     
     INT
     DNSSD
     Push notification
     Asynchronous notification
     
       The Domain Name System (DNS) was designed to return matching records
      efficiently for queries for data that are relatively static.  When those
      records change frequently, DNS is still efficient at returning the
      updated results when polled, as long as the polling rate is not too
      high.
      But, there exists no mechanism for a client to be asynchronously
      notified
      when these changes occur.  This document defines a mechanism for a
      client to be notified of such changes to DNS records, called DNS Push
      Notifications.
    
     
       
         Status of This Memo
         
            This is an Internet Standards Track document.
        
         
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
        
      
       
         Copyright Notice
         
            Copyright (c) 2020 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        
         
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            ( ) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.
        
      
    
     
       
         Table of Contents
         
           
              .   Introduction
             
               
                  .   Requirements Language
              
               
                  .   Fatal Errors
              
            
          
           
              .   Motivation
          
           
              .   Overview
          
           
              .   State Considerations
          
           
              .   Transport
          
           
              .   Protocol Operation
             
               
                  .   Discovery
              
               
                  .   DNS Push Notification SUBSCRIBE
                 
                   
                      .   SUBSCRIBE Request
                  
                   
                      .   SUBSCRIBE Response
                  
                
              
               
                  .   DNS Push Notification Updates
                 
                   
                      .   PUSH Message
                  
                
              
               
                  .   DNS Push Notification UNSUBSCRIBE
                 
                   
                      .   UNSUBSCRIBE Message
                  
                
              
               
                  .   DNS Push Notification RECONFIRM
                 
                   
                      .   RECONFIRM Message
                  
                
              
               
                  .   DNS Stateful Operations TLV Context Summary
              
               
                  .   Client-Initiated Termination
              
               
                  .   Client Fallback to Polling
              
            
          
           
              .   Security Considerations
             
               
                  .   Security Services
              
               
                  .   TLS Name Authentication
              
               
                  .   TLS Early Data
              
               
                  .   TLS Session Resumption
              
            
          
           
              .   IANA Considerations
          
           
              .   References
             
               
                  .   Normative References
              
               
                  .   Informative References
              
            
          
           
               Acknowledgments
          
           
               Authors' Addresses
          
        
      
    
  
   
     
       Introduction
       Domain Name System (DNS) records may be updated using DNS Update
       .  Other mechanisms such
      as a Discovery Proxy   can
      also generate changes to a DNS zone.  This document specifies a protocol
      for DNS clients to subscribe to receive asynchronous notifications of
      changes to RRsets of interest. It is immediately relevant in the case of
      DNS-based Service Discovery  
      but is not limited to that use case; it provides a general DNS
      mechanism for DNS record change notifications. Familiarity with the DNS
      protocol and DNS packet formats is assumed      .
       
         Requirements Language
         
    The key words " MUST", " MUST NOT",
    " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
    " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are
    to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
        
      
       
         Fatal Errors
         Certain invalid situations are described in this specification,
	such
        as a server sending a Push Notification subscription request to a
        client, or a client sending a Push Notification response to a server.
        These should never occur with a correctly implemented client and
        server, and if they do occur, then they indicate a serious
        implementation error.  In these extreme cases, there is no reasonable
        expectation of a graceful recovery, and the recipient detecting the
        error should respond by unilaterally aborting the session without
        regard for data loss.  Such cases are addressed by having an engineer
        investigate the cause of the failure and fixing the problem in the
        software.
         Where this specification says "forcibly abort", it means
       sending a TCP RST to terminate the TCP connection
       and the TLS session running over that TCP connection.
       In the BSD Sockets API, this is achieved by setting the
       SO_LINGER option to zero before closing the socket.
      
    
     
       Motivation
       As the domain name system continues to adapt to new uses and changes
      in deployment, polling has the potential to burden DNS servers at many
      levels throughout the network. Other network protocols have successfully
      deployed a publish/subscribe model following the Observer design pattern
       .  Extensible Messaging and
      Presence Protocol (XMPP) Publish-Subscribe
        and Atom   are examples. While DNS
      servers are generally highly tuned and capable of a high rate of
      query/response traffic, adding a publish/subscribe model for tracking
      changes to DNS records can deliver more timely notifications of changes
      with reduced CPU usage and lower network traffic.
       The guiding design principle of DNS Push Notifications
      is that clients that choose to use DNS Push Notifications,
      instead of repeated polling with DNS queries,
      will receive the same results as they could
      via sufficiently rapid polling, except more efficiently.
      This means that the rules for
      which records match a given DNS Push Notification subscription are the
      same as the already established rules used to determine
      which records match a given DNS query  .
      For example, name comparisons are done in a case-insensitive manner,
      and a record of type CNAME in a zone matches any DNS TYPE in a query or
      subscription.
       Multicast DNS  
      implementations always listen on a well-known link-local IP multicast
      group address, and changes are sent to that multicast group address for
      all group members to receive.  Therefore, Multicast DNS already has
      asynchronous change notification capability.  When DNS-based Service Discovery
        is used across a wide
      area network using Unicast DNS (possibly facilitated via a Discovery
      Proxy  ), it would be
      beneficial to have an equivalent capability for Unicast DNS in order to
      allow clients to learn about DNS record changes in a timely manner
      without polling.
       The DNS Long-Lived Queries (LLQ) mechanism   is an existing deployed solution to provide
      asynchronous change notifications; it was used by Apple's Back to
      My Mac   service
      introduced in Mac OS X 10.5 Leopard in 2007.  Back to My Mac was
      designed in an era when the data center operations staff asserted that
      it was impossible for a server to handle large numbers of
      TCP connections, even if those connections carried
      very little traffic and spent most of their time idle.
      Consequently, LLQ was defined as a UDP-based protocol, effectively
      replicating much of TCP's connection state management logic in user
      space and creating its own imitation of existing TCP features like flow
      control, reliability, and the three-way handshake.
       This document builds on experience gained with the LLQ protocol, with
      an improved design.  Instead of using UDP, this specification uses DNS
      Stateful Operations (DSO)   running over TLS over TCP, and therefore
      doesn't need to reinvent existing TCP functionality.  Using TCP also
      gives long-lived low-traffic connections better longevity through NAT
      gateways without depending on the gateway to support NAT Port Mapping
      Protocol (NAT-PMP)   or
      Port Control Protocol (PCP)  , or resorting to excessive keepalive
      traffic.
    
     
       Overview
       A DNS Push Notification client subscribes for Push Notifications for
      a particular RRset by connecting to the appropriate Push Notification
      server for that RRset and sending DSO message(s) indicating the
      RRset(s) of interest. When the client loses interest in receiving
      further updates to these records, it unsubscribes.
       The DNS Push Notification server for a DNS zone is any server capable
     of generating the correct change notifications for a name.
     It may be a primary, secondary, or stealth name server  .
       The  _dns‑push‑tls._tcp.<zone> SRV record for
      a zone  MAY reference the same target host and port as
      that zone's  _dns‑update‑tls._tcp.<zone> SRV
      record. When the same target host and port is offered for both DNS
      Updates and DNS Push Notifications, a client  MAY use a
      single DSO session to that server for both DNS Updates and DNS Push
      Notification subscriptions.  DNS Updates and DNS Push Notifications may
      be handled on different ports on the same target host, in which case
      they are not considered to be the "same server" for the purposes of this
      specification, and communications with these two ports are handled
      independently.  Supporting DNS Updates and DNS Push Notifications on the
      same server is  OPTIONAL. A DNS Push Notification server
      is not required to support DNS Update.
       Standard DNS Queries  MAY be sent over a DNS Push
      Notification (i.e., DSO) session.  For any zone for which the server is
      authoritative, it  MUST respond authoritatively for
      queries for names falling within that zone (e.g., the
       _dns‑push‑tls._tcp.<zone> SRV record) both for
      normal DNS queries and for DNS Push Notification subscriptions.  For
      names for which the server is acting as a recursive resolver (e.g., when
      the server is the local recursive resolver) for any query for which it
      supports DNS Push Notification subscriptions, it  MUST
      also support standard queries.
       DNS Push Notifications impose less load on the responding server than
      rapid polling would, but Push Notifications do still have a
      cost. Therefore, DNS Push Notification clients  MUST NOT
      recklessly create an excessive number of Push Notification
      subscriptions. Specifically:
       
         A subscription should only be active when there is a valid reason to need
live data (for example, an on-screen display is currently showing the results
to the user), and the subscription  SHOULD be canceled as soon
as the need for that data ends (for example, when the user dismisses that
display). In the case of a device like a smartphone that, after some period
of inactivity, goes to sleep or otherwise darkens its screen, it should cancel
its subscriptions when darkening the screen (since the user cannot see any
changes on the display anyway) and reinstate its subscriptions when
reawakening from display sleep.

         A DNS Push Notification client  SHOULD NOT routinely keep a
DNS Push Notification subscription active 24 hours a day, 7 days a week, just
to keep a list in memory up to date so that if the user does choose to bring
up an on-screen display of that data, it can be displayed really fast. DNS
Push Notifications are designed to be fast enough that there is no need to
pre-load a "warm" list in memory just in case it might be needed later.

      
       Generally, as described in the DNS Stateful Operations specification
       , a client
      must not keep a DSO session to a server open indefinitely if it has no
      subscriptions (or other operations) active on that session. A client
      should begin closing a DSO session immediately after it becomes idle,
      and then, if needed in
      the future, open a new session when required. Alternatively, a client
      may speculatively keep an idle DSO session open for some time, subject
      to the constraint that it must not keep a session open that has been
      idle for more than the session's idle timeout (15 seconds by default)
       .
       Note that a DSO session that has an active DNS Push Notification
      subscription is not considered idle, even if there is no traffic flowing
      for an extended period of time.  In this case, the DSO inactivity
      timeout does not apply, because the session is not inactive, but the
      keepalive interval does still apply, to ensure the generation of
      sufficient messages to maintain state in middleboxes (such at NAT
      gateways or firewalls) and for the client and server to periodically
      verify that they still have connectivity to each other.  This is
      described in  the DSO specification.
    
     
       State Considerations
       Each DNS Push Notification server is capable of handling some finite
     number of Push Notification subscriptions. This number will vary from
     server to server and is based on physical machine characteristics,
     network capacity, and operating system resource allocation. After a
     client establishes a session to a DNS server, each subscription is
     individually accepted or rejected. Servers may employ various techniques
     to limit subscriptions to a manageable level. Correspondingly, the client
     is free to establish simultaneous sessions to alternate DNS servers that
     support DNS Push Notifications for the zone and distribute subscriptions
     at the client's discretion. In this way, both clients and servers can
     react to resource constraints.
    
     
       Transport
       Other DNS operations like DNS Update    MAY use either DNS over User
      Datagram
      Protocol (UDP)   or
      DNS over Transmission Control Protocol (TCP)   as the transport protocol, provided they follow
      the historical precedent that DNS queries must first be sent using DNS
      over UDP
      and only switch to DNS over TCP if needed  .
      This requirement to prefer UDP
      has subsequently been relaxed  .
       In keeping with the more recent precedent, DNS Push Notification is
      defined only for TCP.
     DNS Push Notification clients  MUST use
     DNS Stateful Operations  
     running over TLS over TCP  .
       
Connection setup over TCP ensures return reachability and alleviates concerns
of state overload at the server, a potential problem with connectionless
protocols, which can be more vulnerable to being exploited by attackers using
spoofed source addresses.

     All subscribers are guaranteed to be reachable by the server by virtue of
     the TCP three-way handshake.  Flooding attacks are possible with any
     protocol, and a benefit of TCP is that there are already established
     industry best practices to guard against SYN flooding and similar attacks
        .
       Use of TCP also allows DNS Push Notifications to take advantage of
      current and future developments in TCP such as Multipath TCP (MPTCP)
       , TCP Fast Open (TFO)
       , the TCP RACK fast loss
      detection algorithm  , and so on.
       Transport Layer Security (TLS)   is well understood and is used by many
      application-layer protocols running over TCP. TLS is designed to prevent
      eavesdropping, tampering, and message forgery. TLS is
       REQUIRED for every connection between a client subscriber
      and server in this protocol specification. Additional security measures
      such as client authentication during TLS negotiation may also be
      employed to increase the trust relationship between client and
      server.
    
     
       Protocol Operation
       The DNS Push Notification protocol is a session-oriented protocol and
      makes use of
     DNS Stateful Operations (DSO)  .
       For details of the DSO message format, refer to the
     DNS Stateful Operations specification  .
     Those details are not repeated here.
       DNS Push Notification clients and servers  MUST support
      DSO.
     A single server can support DNS Queries, DNS Updates, and DNS Push
     Notifications (using DSO) on the same TCP port.
       A DNS Push Notification exchange begins with the client discovering
      the appropriate server, using the procedure described in  , and then making a TLS/TCP
      connection to it.
       After making the TLS/TCP connection to the server,
     a typical DNS Push Notification client will then immediately issue a DSO
     Keepalive operation to establish the DSO session
     and request a session timeout and/or keepalive interval
     longer than the 15-second default values, but this is not required.
     A DNS Push Notification client  MAY issue other requests on
     the
     session first, and only issue a DSO Keepalive
     operation later if it determines that to be necessary.
     Sending either a DSO Keepalive operation or a Push Notification
     subscription request over the TLS/TCP connection to the server signals
     the
     client's support of DSO and serves to establish a DSO session.
       In accordance with the current set of active subscriptions,
     the server sends relevant asynchronous Push Notifications to
     the client. Note that a client  MUST be prepared to receive
     (and silently ignore) Push Notifications for subscriptions it
     has previously removed, since there is no way to prevent the
     situation where a Push Notification is in flight from server
     to client while the client's UNSUBSCRIBE message canceling
     that subscription is simultaneously in flight from client to
     server.
       
         Discovery
         The first step in establishing a DNS Push Notification
        subscription is to discover an appropriate DNS server that
        supports DNS Push Notifications for the desired zone.
         The client begins by opening a DSO session to its normal configured
        DNS recursive resolver and requesting a Push Notification
	subscription.
        This connection is made to TCP port 853, the default port for
        DNS over TLS  .
        If the request for a Push Notification subscription is successful,
        and the recursive resolver doesn't already have an active subscription
	for that name, type, and class,
        then the recursive resolver will make a corresponding
        Push Notification subscription on the client's behalf.
        Results received are relayed to the client.
        This is closely analogous to how a client sends a normal DNS
        query to its configured DNS recursive resolver, which,
        if it doesn't already have appropriate answer(s) in its cache,
        issues an upstream query to satisfy the request.
         In many contexts, the recursive resolver will be able to handle
        Push Notifications for all names that the client may need to follow.
        Use of VPN tunnels and Private DNS  
        can create some additional complexity in the client software here;
        the techniques to handle VPN tunnels and Private DNS for DNS Push
        Notifications are the same as those already used to handle this for
        normal DNS queries.
         If the recursive resolver does not support DNS over TLS, or
        supports DNS over TLS but is not listening on TCP port 853, or
        supports DNS over TLS on TCP port 853 but does not support DSO on that
        port, then the DSO session establishment will fail  .
         If the recursive resolver does support DSO on TCP port 853
        but does not support Push Notification subscriptions,
        then when the client attempts to create a subscription,
        the server will return the DSO error code DSOTYPENI (11).
         In some cases, the recursive resolver may support DSO and Push
        Notification subscriptions but may not be able
        to subscribe for Push Notifications for a particular name.
        In this case, the recursive resolver should return
        SERVFAIL to the client. This includes being unable
        to establish a connection
        to the zone's DNS Push Notification server or establishing
        a connection but receiving a non-success response code.
        In some cases, where the client has a pre-established trust
        relationship with the owner of the zone (that is not handled
        via the usual mechanisms for VPN software), the client may
        handle these failures by contacting the zone's DNS Push Notification
	server
        directly.
         In any of the cases described above where the client
        fails to establish a DNS Push Notification subscription via its
        configured recursive resolver, the client should proceed to discover
        the appropriate server for direct communication.  The client
	 MUST
        also determine on which TCP port the server is listening for
        connections, which need not be, and often is not,
        TCP port 53 (traditionally used for conventional DNS) or
        TCP port 853 (traditionally used for DNS over TLS).
         The discovery algorithm described here is an iterative algorithm,
        which starts with the full name of the record to which the
        client wishes to subscribe. Successive SOA queries are then
        issued, trimming one label each time, until
        the closest enclosing authoritative server is discovered.
        There is also an optimization to enable the client to
        take a "short cut" directly to the SOA record of
        the closest enclosing authoritative server in many cases.
         
           The client begins the discovery by sending a DNS query to its
          local resolver, with record type SOA   for the record name to which it wishes to
          subscribe.  As an example, suppose the client wishes to subscribe to
          PTR records with the name  _ipp._tcp.headoffice.example.com
	    (to
          discover Internet Printing Protocol (IPP) printers     being advertised in the head office of Example
          Company).  The client begins by sending an SOA query for
           _ipp._tcp.headoffice.example.com to the local recursive
	    resolver.
          The goal is to determine the server that is authoritative for the
	    name
           _ipp._tcp.headoffice.example.com.  The closest enclosing
	    DNS zone
          containing the name  _ipp._tcp.headoffice.example.com could
	    be
           example.com, or  headoffice.example.com, or
           _tcp.headoffice.example.com, or even
           _ipp._tcp.headoffice.example.com.  The client does not know
	    in
          advance where the closest enclosing zone cut occurs, which is why it
          uses the iterative procedure described here to discover this
          information.
           
             If the requested SOA record exists, it will be returned in the
            Answer Section with a NOERROR response code, and the client has
            succeeded in discovering the information it needs.
            
             
            (This language is not placing any new requirements on DNS
	        recursive resolvers.
            This text merely describes the existing operation of the DNS
	        protocol
               .)
          
           
             If the requested SOA record does not exist, the client will get
            back a NOERROR/NODATA response or an NXDOMAIN/Name Error response.
            In either case, the local resolver would normally include the SOA
            record for the closest enclosing zone of the requested name in the
            Authority Section.  If the SOA record is received in the Authority
            Section, then the client has succeeded in discovering the
            information it needs.
            
             
            (This language is not placing any new requirements on DNS
	        recursive resolvers.
            This text merely describes the existing operation of the DNS
	        protocol
            regarding negative responses  .)
          
           If the client receives a response containing no SOA record, then
          it proceeds with the iterative approach.  The client strips the
          leading label from the current query name, and if the resulting name
          has at least two labels in it, then the client sends an SOA query
	  for
          that new name and processing continues at step 2 above, repeating
          the iterative search until either an SOA is received or the query
          name consists of a single label, i.e., a Top-Level Domain (TLD).  In
          the case of a single-label name (TLD), this is a network
          configuration error, which should not happen, and the client gives
          up.  The client may retry the operation at a later time of the
          client's choosing, such as after a change in network
	    attachment.
           Once the SOA is known (by virtue of being seen either in the
          Answer Section or in the Authority Section), the client sends a DNS
          query with type SRV  
          for the record name
           _dns‑push‑tls._tcp.<zone>, where
          <zone> is the owner name of the discovered SOA record.
           If the zone in question is set up to offer DNS Push
          Notifications, then this SRV record  MUST exist. (If
          this SRV record does not exist, then the zone is not correctly
          configured for DNS Push Notifications as specified in this
          document.) The SRV  target contains the name of the server
          providing DNS Push Notifications for the zone. The port number on
          which to contact the server is in the SRV record  port
          field. The address(es) of the target host  MAY be
          included in the Additional Section, however, the address records
           SHOULD be authenticated before use as described in
            and in the
          specification for using DNS-Based Authentication of Named Entities
	    (DANE) TLSA Records with SRV Records  , if applicable.
           More than one SRV record may be returned. In this
          case, the  priority and  weight values in the
          returned SRV records are used to determine the order in which to
          contact the servers for subscription requests. As described in the
          SRV specification  ,
          the server with the lowest  priority is first contacted. If
          more than one server has the same  priority, the
           weight indicates the weighted probability that the client
          should contact that server. Higher weights have higher probabilities
          of being selected.  If a server is not willing to accept a
          subscription request, or is not reachable within a reasonable time,
          as determined by the client, then a subsequent server is to be
          contacted.
        
         Each time a client makes a new DNS Push Notification subscription,
        it  SHOULD repeat the discovery process in order to
        determine the preferred DNS server for that subscription at that time.
        If a client already has a DSO session with that DNS server, the client
         SHOULD reuse that existing DSO session for the new
        subscription; otherwise, a new DSO session is established.  The client
         MUST respect the DNS TTL values on records it receives
        while performing the discovery process and store them in its local
        cache with this lifetime (as it will generally do anyway for all
        DNS queries it performs).  This means that, as long as the DNS TTL
        values on the authoritative records are set to reasonable values,
        repeated application of the discovery process can be completed
	practically
        instantaneously by the client, using only locally stored cached
        data.
      
       
         DNS Push Notification SUBSCRIBE
         After connecting, and requesting a longer idle timeout and/or
        keepalive interval if necessary, a DNS Push Notification client then
        indicates its desire to receive DNS Push Notifications for a given
        domain name by sending a SUBSCRIBE request to the server.  A SUBSCRIBE
        request is encoded in a DSO message  . This specification defines a
        DSO Primary TLV for DNS Push Notification SUBSCRIBE Requests
        (DSO Type Code 0x0040).
         DSO messages with the SUBSCRIBE TLV as the Primary TLV are
        permitted in TLS early data, provided that the precautions described
	in
          are followed.
         The entity that initiates a SUBSCRIBE request is by definition the
        client.  A server  MUST NOT send a SUBSCRIBE request
        over an existing session from a client.  If a server does send a
        SUBSCRIBE request over a DSO session initiated by a client, this is a
        fatal error and the client  MUST forcibly abort the
        connection immediately.
         Each SUBSCRIBE request generates exactly one SUBSCRIBE response
        from the server.  The entity that initiates a SUBSCRIBE response is by
        definition the server.  A client  MUST NOT send a
        SUBSCRIBE response.  If a client does send a SUBSCRIBE response, this
        is a fatal error and the server  MUST forcibly abort the
        connection immediately.
         
           SUBSCRIBE Request
           A SUBSCRIBE request begins with the standard DSO 12-byte header
           , followed by the
          SUBSCRIBE Primary TLV.  A SUBSCRIBE request is illustrated in  .
           The MESSAGE ID field  MUST be set to a unique
          value that the client is not using for any other active operation
          on this DSO session. For the purposes here, a MESSAGE ID is in use
          on this session if either the client has used it in a request for
	    which it
          has not yet received a response, or if the client has used it for a
          subscription that it has not yet canceled using UNSUBSCRIBE. In
          the SUBSCRIBE response, the server  MUST echo back the
          MESSAGE ID value unchanged.
           The other header fields  MUST be set as described
	    in the
          DSO specification.
         The DNS OPCODE field contains the OPCODE value for DNS Stateful
	  Operations (6).
         The four count fields must be zero, and the corresponding four
	  sections must be empty (i.e., absent).
           The DSO-TYPE is SUBSCRIBE (0x0040).
           The DSO-LENGTH is the length of the DSO-DATA that follows, which
	    specifies
         the name, type, and class of the record(s) being sought.
           
             SUBSCRIBE Request
             
                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |                  MESSAGE ID                   |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |         DSO-TYPE = SUBSCRIBE (0x0040)         |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |   DSO-LENGTH (number of octets in DSO-DATA)   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   \                     NAME                      \   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     TYPE                      |     > DSO-DATA
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     CLASS                     |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
          
           The DSO-DATA for a SUBSCRIBE request  MUST contain
	    exactly one NAME, TYPE, and CLASS.
         Since SUBSCRIBE requests are sent over TCP, multiple SUBSCRIBE DSO
	  request messages
         can be concatenated in a single TCP stream and packed efficiently
	  into TCP segments.
           If accepted, the subscription will stay in effect until the
          client cancels the subscription using UNSUBSCRIBE or until the DSO
          session between the client and the server is closed.
           SUBSCRIBE requests on a given session  MUST be
          unique.  A client  MUST NOT send a SUBSCRIBE message
          that duplicates the name, type and class of an existing active
          subscription on that DSO session.  For the purpose of this matching,
          the established DNS case insensitivity for US-ASCII letters   applies (e.g., "example.com" and
          "Example.com" are the same).  If a server receives such a duplicate
          SUBSCRIBE message, this is a fatal error and the server
           MUST forcibly abort the connection immediately.
           DNS wildcarding is not supported.
          That is, an asterisk character ("*") in a SUBSCRIBE message matches
          only a literal asterisk character ("*") in a name and nothing else.
          Similarly, a CNAME in a SUBSCRIBE message matches only a CNAME
	    record
          with that name in the zone and no other records with that name.
           A client may SUBSCRIBE to records that are unknown to the server
          at the time of the request (providing that the name falls within one
          of the zone(s) the server is responsible for), and this is not an
          error. The server  MUST NOT return NXDOMAIN in this
          case. The server  MUST accept these requests and send
          Push Notifications if and when matching records are found in the
          future.
           If neither TYPE nor CLASS are ANY (255), then this is a specific
          subscription to changes for the given name, type, and class. If one
          or both of TYPE or CLASS are ANY (255), then this subscription
          matches all types and/or all classes as appropriate.
           NOTE: A little-known quirk of DNS is that in DNS QUERY requests,
          QTYPE and QCLASS 255 mean "ANY", not "ALL". They indicate that the
          server should respond with ANY matching records of its choosing, not
          necessarily ALL matching records. This can lead to some surprising
          and unexpected results, where a query returns some valid answers,
	    but
          not all of them, and makes QTYPE = 255 (ANY) queries less useful
          than people sometimes imagine.
           When used in conjunction with SUBSCRIBE, TYPE 255 and CLASS 255
          should be interpreted to mean "ALL", not "ANY". After accepting a
          subscription where one or both of TYPE or CLASS are 255, the server
           MUST send Push Notification Updates for ALL record
          changes that match the subscription, not just some of them.
        
         
           SUBSCRIBE Response
           A SUBSCRIBE response begins with the standard
         DSO 12-byte header  .
         The QR bit in the header is set indicating it is a response.
         The header  MAY be followed by one or more
         optional Additional TLVs such as a Retry Delay Additional TLV.
         A SUBSCRIBE response is illustrated in  .
           The MESSAGE ID field  MUST echo the value given in
          the MESSAGE ID field of the SUBSCRIBE request.  This is how the
          client knows which request is being responded to.
           The other header fields  MUST be set as described
          in the  DSO specification.  The DNS OPCODE field
	    contains the OPCODE
          value for DNS Stateful Operations (6).  The four count fields must
          be zero, and the corresponding four sections must be empty (i.e.,
          absent).
           A SUBSCRIBE response message  MUST NOT include a
	    SUBSCRIBE TLV.
         If a client receives a SUBSCRIBE response message containing a
	  SUBSCRIBE TLV,
         then the response message is processed but the SUBSCRIBE TLV
	   MUST be silently ignored.
           
             SUBSCRIBE Response
             
                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |                  MESSAGE ID                   |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /


          
           In the SUBSCRIBE response, the RCODE indicates whether or not the
          subscription was accepted. Supported RCODEs are as follows:
           
             SUBSCRIBE Response Codes
             
               
                 Mnemonic
                 Value
                 Description
              
            
             
               
                 NOERROR
                 0
                 SUBSCRIBE successful.
              
               
                 FORMERR
                 1
                 Server failed to process request due to a
		malformed request.
              
               
                 SERVFAIL
                 2
                 Server failed to process request due to a
		problem with the server.
              
               
                 NOTIMP
                 4
                 Server does not implement DSO.
              
               
                 REFUSED
                 5
                 Server refuses to process request for policy
		or security reasons.
              
               
                 NOTAUTH
                 9
                 Server is not authoritative for the requested
		name.
              
               
                 DSOTYPENI
                 11
                 SUBSCRIBE operation not supported.
              
            
          
           This document specifies only these RCODE values for SUBSCRIBE
          Responses. Servers sending SUBSCRIBE Responses  SHOULD
          use one of these values. Note that NXDOMAIN is not a valid RCODE in
          response to a SUBSCRIBE Request. However, future circumstances may
          create situations where other RCODE values are appropriate in
          SUBSCRIBE Responses, so clients  MUST be prepared to
          accept and handle SUBSCRIBE Responses with any other nonzero RCODE
	    error values.
           If the server sends a nonzero RCODE in the SUBSCRIBE response,
	    that means:
          
           
             the client is (at least partially) misconfigured, or
             the server resources are exhausted, or
             there is some other unknown failure on the server.
          
           
           In any case, the client shouldn't retry the subscription to this
           server right away. If multiple SRV records were returned as
           described in  , a subsequent server
            MAY be tried immediately.
           If the client has other successful subscriptions to this server,
          these subscriptions remain even though additional subscriptions may
          be refused. Neither the client nor the server is required to close
          the connection, although either end may choose to do so.
           If the server sends a nonzero RCODE, then it
	     SHOULD
          append a Retry Delay Additional TLV  
          to the response specifying a delay before the client attempts this
          operation again. Recommended values for the delay for different
          RCODE values are given below. These recommended values apply both to
          the default values a server should place in the Retry Delay
	    Additional TLV and
          the default values a client should assume if the server provides no
          Retry Delay Additional TLV.
          
           
             For RCODE = 1 (FORMERR), the delay may be any value selected
	        by
            the implementer. A value of five minutes is
             RECOMMENDED to reduce the risk of high load from
            defective clients.
             For RCODE = 2 (SERVFAIL), the delay should be chosen according
            to the level of server overload and the anticipated duration of
            that overload. By default, a value of one minute is
             RECOMMENDED. If a more serious server failure
            occurs, the delay may be longer in accordance with the specific
            problem encountered.
             For RCODE = 4 (NOTIMP), which occurs on a server that doesn't
	        implement
             DNS Stateful Operations  ,
             it is unlikely that the server will begin supporting DSO
             in the next few minutes, so the retry delay  SHOULD
	          be one hour.
             Note that in such a case, a server that doesn't implement DSO
             is unlikely to place a Retry Delay Additional TLV in its
	          response, so this
             recommended value in particular applies to what a client should
	          assume by default.
             For RCODE = 5 (REFUSED), which occurs on a server that
            implements DNS Push Notifications but is currently configured to
            disallow DNS Push Notifications, the retry delay may be any value
            selected by the implementer and/or configured by the
            operator.
             If the server being queried is listed in a
              _dns‑push‑tls._tcp.<zone>
             SRV record for the zone, then this is a misconfiguration,
             since this server is being advertised as supporting DNS Push
	          Notifications for this zone,
             but the server itself is not currently configured to perform that
	          task.
             Since it is possible that the misconfiguration may be repaired
             at any time, the retry delay should not be set too high.  By
	          default,
             a value of 5 minutes is  RECOMMENDED.
             For RCODE = 9 (NOTAUTH), which occurs on a server that
            implements DNS Push Notifications but is not configured to be
            authoritative for the requested name, the retry delay may be any
            value selected by the implementer and/or configured by the
            operator.
             If the server being queried is listed in a
              _dns‑push‑tls._tcp.<zone>
             SRV record for the zone, then this is a misconfiguration,
             since this server is being advertised as supporting DNS Push
	          Notifications for this zone,
             but the server itself is not currently configured to perform that
	          task.
             Since it is possible that the misconfiguration may be repaired
             at any time, the retry delay should not be set too high.  By
	          default,
             a value of 5 minutes is  RECOMMENDED.
             For RCODE = 11 (DSOTYPENI),
             which occurs on a server that implements DSO but doesn't
	          implement DNS Push Notifications,
             it is unlikely that the server will begin supporting DNS Push
	          Notifications
             in the next few minutes, so the retry delay  SHOULD
	          be one hour.
             For other RCODE values, the retry delay should be
            set by the server as appropriate for that error condition.
            By default, a value of 5 minutes is
	         RECOMMENDED.
          
           For RCODE = 9 (NOTAUTH), the time delay applies to requests for
          other names falling within the same zone. Requests for names falling
          within other zones are not subject to the delay. For all other
          RCODEs, the time delay applies to all subsequent requests to this
          server.
           After sending an error response, the server  MAY
          allow the session to remain open, or  MAY follow it
	    with
          a DSO Retry Delay operation (using the Retry Delay Primary TLV)
          instructing the client to close the session as described in the
           DSO specification.
          Clients  MUST correctly handle both cases.
          Note that the
          DSO Retry Delay operation (using the Retry Delay Primary TLV)
          is different to the Retry Delay Additional TLV mentioned above.
          
        
      
       
         DNS Push Notification Updates
         Once a subscription has been successfully established,
        the server generates PUSH messages to send to the client as
	appropriate.
        In the case that the answer set was already non-empty at the moment
        the subscription was established, an initial PUSH message will be sent
        immediately following the SUBSCRIBE Response. Subsequent changes to
	the
        answer set are then communicated to the client in subsequent PUSH
	messages.
         A client  MUST NOT send a PUSH message.
       If a client does send a PUSH message,
       or a PUSH message is sent with the QR bit set indicating that it is a
       response,
       this is a fatal error and the receiver  MUST forcibly
       abort the connection immediately.
         
           PUSH Message
           A PUSH unidirectional message begins with the standard
         DSO 12-byte header  ,
	  followed by the PUSH Primary TLV.
         A PUSH message is illustrated in  .
           In accordance with the definition of DSO unidirectional messages,
         the MESSAGE ID field  MUST be zero.
         There is no client response to a PUSH message.
           The other header fields  MUST be set as described
	    in the
         DSO specification  .
         The DNS OPCODE field contains the OPCODE value for DNS Stateful
	  Operations (6).
         The four count fields must be zero, and the corresponding four
	  sections must be empty (i.e., absent).
           The DSO-TYPE is PUSH (0x0041).
           The DSO-LENGTH is the length of the DSO-DATA that follows, which
	    specifies
         the changes being communicated.
           The DSO-DATA contains one or more change notifications.
         A PUSH Message  MUST contain at least one change
	  notification.
         If a PUSH Message is received that contains no change notifications,
         this is a fatal error and the client  MUST forcibly
	  abort the connection immediately.
           The change notification records are formatted similarly to how
         DNS Resource Records are conventionally expressed in DNS messages,
         as illustrated in  ,
         and are interpreted as described below.
           The TTL field holds an unsigned 32-bit integer  .
         If the TTL is in the range 0 to 2,147,483,647 seconds (0 to
	  2 31 - 1, or 0x7FFFFFFF),
         then a new DNS Resource Record with the given name, type, class, and
	  RDATA is added.
         Type and class  MUST NOT be 255 (ANY). If either type
	  or class are 255 (ANY),
         this is a fatal error and the client  MUST forcibly
	  abort the connection immediately.
         A TTL of 0 means that this record should be retained for as long as
	  the subscription is active
         and should be discarded immediately the moment the subscription is
	   canceled.
           If the TTL has the value 0xFFFFFFFF, then the DNS Resource Record
          with the given name, type, class, and RDATA is removed.  Type and
          class  MUST NOT be 255 (ANY). If either type or class
          are 255 (ANY), this is a fatal error and the client
           MUST forcibly abort the connection immediately.
           If the TTL has the value 0xFFFFFFFE, then this is a 'collective'
          remove notification.  For collective remove notifications, RDLEN
           MUST be zero, and consequently, the RDATA
           MUST be empty.  If a change notification is received
          where TTL = 0xFFFFFFFE and RDLEN is not zero, this is a fatal error
          and the client  MUST forcibly abort the connection
          immediately.
           There are three types of collective remove notification.
          For collective remove notifications:
           
             If CLASS is not 255 (ANY) and TYPE is not 255 (ANY), then for the given
name, this removes all records of the specified type in the specified class.

             If CLASS is not 255 (ANY) and TYPE is 255 (ANY), then for the given name,
this removes all records of all types in the specified class.

             If CLASS is 255 (ANY), then for the given name, this removes all records
of all types in all classes.  In this case, TYPE  MUST be set to
zero on
transmission and  MUST be silently ignored on reception.

          
           Summary of change notification types:
          
           
             
               Remove all RRsets from a name in all classes: 
             TTL = 0xFFFFFFFE, RDLEN = 0, CLASS = 255 (ANY).
            
             
               Remove all RRsets from a name in given class: 
             TTL = 0xFFFFFFFE, RDLEN = 0, CLASS gives class, TYPE = 255
	           (ANY).
            
             
               Remove specified RRset from a name in given class: 
             TTL = 0xFFFFFFFE, RDLEN = 0, 
             CLASS and TYPE specify the RRset being removed.
            
             
               Remove an individual RR from a name: 
             TTL = 0xFFFFFFFF, 
             CLASS, TYPE, RDLEN, and RDATA specify the RR being removed.
            
             
               Add individual RR to a name: 
             TTL >= 0 and TTL <= 0x7FFFFFFF, 
             CLASS, TYPE, RDLEN, RDATA, and TTL specify the RR being
	           added.
            
          
           Note that it is valid for the RDATA of an added or removed DNS
          Resource Record to be empty (zero length).  For example, an Address
          Prefix List Resource Record   may have empty RDATA.  Therefore, a change
          notification with RDLEN = 0 does not automatically indicate a remove
          notification.  If RDLEN = 0 and TTL is in the range 0 to
          0x7FFFFFFF, this change notification signals the addition of a
          record with the given name, type, class, and empty RDATA.  If RDLEN
          = 0 and TTL = 0xFFFFFFFF, this change notification signals the
          removal specifically of that single record with the given name,
          type, class, and empty RDATA.
           If the TTL is any value other than 0xFFFFFFFF, 0xFFFFFFFE, or a
	    value in the range 0 to 0x7FFFFFFF,
         then the receiver  SHOULD silently ignore this
	  particular change notification record.
         The connection is not terminated and other valid change notification
	  records
         within this PUSH message are processed as usual.
           In the case where a single change affects more than one active
          subscription, only one PUSH message is sent. For example, a PUSH
          message adding a given record may match both a SUBSCRIBE request
          with the same TYPE and a different SUBSCRIBE request with TYPE = 255
          (ANY). It is not the case that two PUSH messages are sent because
          the new record matches two active subscriptions.
           The server  SHOULD encode change notifications in
	    the most efficient manner possible.
          For example, when three AAAA records are removed from a given name,
	    and no other AAAA
          records exist for that name, the server  SHOULD send a
          "Remove specified RRset from a name in given class" PUSH message,
	    not three separate
          "Remove an individual RR from a name" PUSH messages.
          Similarly, when both an SRV and a TXT record are removed from a
	    given name, and no other
          records of any kind exist for that name in that class, the server
	     SHOULD send a
          "Remove all RRsets from a name in given class" PUSH message, not two
	    separate
          "Remove specified RRset from a name in given class" PUSH
	    messages.
           For efficiency, when generating a PUSH message, rather than
	    sending
          each change notification as a separate DSO message, a server
           SHOULD include as many change notifications as it has
          immediately available to send to that client, even if those change
          notifications apply to different subscriptions from that
	    client. Conceptually, a PUSH
          message is a session-level mechanism, not a subscription-level
	    mechanism.
          Once it has exhausted the list of change notifications immediately
	    available to send to that client,
          a server  SHOULD then send the PUSH message
	    immediately
          rather than waiting speculatively to see if additional change
	    notifications become available.
           For efficiency, when generating a PUSH message a server
           SHOULD use standard DNS name compression, with
	    offsets
          relative to the beginning of the DNS message  .  When multiple change notifications in a single
          PUSH message have the same owner name, this name compression can
          yield significant savings.  Name compression should be performed as
          specified in  the Multicast DNS specification; namely,
	    owner names
          should always be compressed, and names appearing within RDATA should
          be compressed for only the RR types listed below:
          
           
             
             NS, CNAME, PTR, DNAME, SOA, MX, AFSDB, RT, KX, RP, PX, SRV,
	        NSEC
          
           Servers may generate PUSH messages up to a maximum DNS message
	    length of 16,382 bytes,
         counting from the start of the DSO 12-byte header.
         Including the two-byte length prefix that is used to frame DNS over a
	  byte stream
         like TLS, this makes a total of 16,384 bytes.
         Servers  MUST NOT generate PUSH messages larger than
	  this.
         Where the immediately available change notifications
         are sufficient to exceed a DNS message length of 16,382 bytes,
         the change notifications  MUST be communicated in
	  separate PUSH messages
         of up to 16,382 bytes each.
         DNS name compression becomes less effective for messages larger than
	  16,384 bytes,
         so little efficiency benefit is gained by sending messages larger
	  than this.
           If a client receives a PUSH message with a DNS message length
	    larger than 16,382 bytes,
         this is a fatal error and the client  MUST forcibly
	  abort the connection immediately.
           
             PUSH Message
             
                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |           MESSAGE ID (MUST BE ZERO)           |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |            DSO-TYPE = PUSH (0x0041)           |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |   DSO-LENGTH (number of octets in DSO-DATA)   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   \                     NAME                      \   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     TYPE                      |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     CLASS                     |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                      TTL                      |    |
   |     (32-bit unsigned big-endian integer)      |     > DSO-DATA
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |  RDLEN (16-bit unsigned big-endian integer)   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   \           RDATA (sized as necessary)          \    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   :     NAME, TYPE, CLASS, TTL, RDLEN, RDATA      :    |
   :             Repeated As Necessary             :   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
          
           When processing the records received in a PUSH Message, the
	    receiving client  MUST validate
         that the records being added or removed correspond with at least one
	  currently active
         subscription on that session. Specifically, the record name
	   MUST match the name given in the
         SUBSCRIBE request, subject to the usual established DNS
	  case-insensitivity for US-ASCII letters.
         For individual additions and removals,
         if the TYPE in the SUBSCRIBE request was not ANY (255),
         then the TYPE of the record must either be CNAME or match the TYPE
	  given in the SUBSCRIBE request, and
         if the CLASS in the SUBSCRIBE request was not ANY (255),
         then the CLASS of the record must match the CLASS given in the
	  SUBSCRIBE request.
         For collective removals, at least one of the records being removed
	  must match an active subscription.
         If a matching active subscription on that session is not found, then
	  that particular
         addition/removal record is silently ignored. The processing of other
	  additions and removal records
         in this message is not affected. The DSO session is not closed. This
	  is to allow for
         the unavoidable race condition where a client sends an outbound
	  UNSUBSCRIBE while
         inbound PUSH messages for that subscription from the server are still
	  in flight.
           The TTL of an added record is stored by the client.  While the
	    subscription
           is active the TTL is not decremented, because a change to the TTL
	      would
           produce a new update.
           For as long as a relevant subscription remains active, the client
            SHOULD assume that when a record goes away, the
	      server will notify it
           of that fact.  Consequently, a client does not have to poll to
	      verify
           that the record is still there.  Once a subscription is canceled
           (individually, or as a result of the DSO session being closed),
	      record
           aging for records covered by the subscription resumes and records
	      are
           removed from the local cache when their  TTL reaches zero.
        
      
       
         DNS Push Notification UNSUBSCRIBE
         To cancel an individual subscription without closing the entire DSO
        session, the client sends an UNSUBSCRIBE message over the established
        DSO session to the server.
         The entity that initiates an UNSUBSCRIBE message is by definition
	the client.
       A server  MUST NOT send an UNSUBSCRIBE message over an
       existing session from a client.
       If a server does send an UNSUBSCRIBE message over a DSO session
       initiated by a client,
       or an UNSUBSCRIBE message is sent with the QR bit set indicating that
       it is a response,
       this is a fatal error and the receiver  MUST forcibly
       abort the connection immediately.
         
           UNSUBSCRIBE Message
           An UNSUBSCRIBE unidirectional message begins with the standard
         DSO 12-byte header  ,
	  followed by the UNSUBSCRIBE Primary TLV.
         An UNSUBSCRIBE message is illustrated in  .
           In accordance with the definition of DSO unidirectional messages,
         the MESSAGE ID field  MUST be zero.
         There is no server response to an UNSUBSCRIBE message.
           The other header fields  MUST be set as described
	    in the
          DSO specification.
         The DNS OPCODE field contains the OPCODE value for DNS Stateful
	  Operations (6).
         The four count fields must be zero, and the corresponding four
	  sections must be empty (i.e., absent).
           The DSO-TYPE is UNSUBSCRIBE (0x0042).
           The DSO-LENGTH field contains the value 2, the length of the
	    2-octet MESSAGE ID contained in the DSO-DATA.
           The DSO-DATA contains the value previously given in the MESSAGE
	    ID field of an active SUBSCRIBE request.
         This is how the server knows which SUBSCRIBE request is being
	  canceled.
         After receipt of the UNSUBSCRIBE message, the SUBSCRIBE request is no
	  longer active.
           It is allowable for the client to issue an UNSUBSCRIBE message
	    for a previous SUBSCRIBE request
         for which the client has not yet received a SUBSCRIBE response.
         This is to allow for the case where a client starts and stops a
	  subscription in less than the
         round-trip time to the server.
         The client is NOT required to wait for the SUBSCRIBE response before
	  issuing the UNSUBSCRIBE message.
           Consequently, it is possible for a server to receive an
	    UNSUBSCRIBE message
         that does not match any currently active subscription.
         This can occur when a client sends a SUBSCRIBE request,
         which subsequently fails and returns an error code,
         but the client sent an UNSUBSCRIBE message before it
         became aware that the SUBSCRIBE request had failed.
         Because of this, servers  MUST silently ignore
         UNSUBSCRIBE messages that do not match any currently active
	   subscription.
           
             UNSUBSCRIBE Message
             
                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |           MESSAGE ID (MUST BE ZERO)           |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |         DSO-TYPE = UNSUBSCRIBE (0x0042)       |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |                DSO-LENGTH (2)                 |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |              SUBSCRIBE MESSAGE ID             |   > DSO-DATA
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
          
        
      
       
         DNS Push Notification RECONFIRM
         Sometimes, particularly when used with a Discovery Proxy  , a DNS Zone may contain
        stale data. When a client encounters data that it believes may be
        stale (e.g., an SRV record referencing a target host+port that is not
        responding to connection requests), the client can send a RECONFIRM
        message to ask the server to re-verify that the data is still
        valid. For a Discovery Proxy, this causes it to issue new Multicast
        DNS queries to ascertain whether the target device is still
        present. How the Discovery Proxy causes these new Multicast DNS
        queries to be issued depends on the details of the underlying
        Multicast DNS implementation being used.  For example, a Discovery
        Proxy built on Apple's dns_sd.h API   responds to a DNS Push Notification RECONFIRM
        message by calling the underlying API's DNSServiceReconfirmRecord()
        routine.
         For other types of DNS server, the RECONFIRM operation is currently
        undefined and  SHOULD result in a NOERROR response, but
        it need not cause any other action to occur.
         Frequent use of RECONFIRM operations may be a sign of network
        unreliability, or some kind of misconfiguration, so RECONFIRM
        operations  MAY be logged or otherwise communicated to a
        human administrator to assist in detecting and remedying such network
        problems.
         If, after receiving a valid RECONFIRM message, the server
        determines that the disputed records are in fact no longer valid, then
        subsequent DNS PUSH Messages will be generated to inform interested
        clients. Thus, one client discovering that a previously advertised
        device (like a network printer) is no longer present has the side
        effect of informing all other interested clients that the device in
        question is now gone.
         The entity that initiates a RECONFIRM message is by definition the
	client.
       A server  MUST NOT send a RECONFIRM message over an
       existing session from a client.
       If a server does send a RECONFIRM message over a DSO session initiated
       by a client,
       or a RECONFIRM message is sent with the QR bit set indicating that it
       is a response,
       this is a fatal error and the receiver  MUST forcibly
       abort the connection immediately.
         
           RECONFIRM Message
           A RECONFIRM unidirectional message begins with the standard DSO
          12-byte header  ,
          followed by the RECONFIRM Primary TLV.
          A RECONFIRM message is illustrated in  .
           In accordance with the definition of DSO unidirectional messages,
         the MESSAGE ID field  MUST be zero.
         There is no server response to a RECONFIRM message.
           The other header fields  MUST be set as described
	    in the
          DSO specification.
         The DNS OPCODE field contains the OPCODE value for DNS Stateful
	  Operations (6).
         The four count fields must be zero, and the corresponding four
	  sections must be empty (i.e., absent).
           The DSO-TYPE is RECONFIRM (0x0043).
           The DSO-LENGTH is the length of the data that follows, which
	    specifies
         the name, type, class, and content of the record being disputed.
           A DNS Push Notifications RECONFIRM message contains exactly one
	    RECONFIRM Primary TLV.
          The DSO-DATA in a RECONFIRM Primary TLV  MUST contain
	    exactly one record.
          The DSO-DATA in a RECONFIRM Primary TLV has no count field to
	    specify more than one record.
          Since RECONFIRM messages are sent over TCP, multiple RECONFIRM
	    messages
          can be concatenated in a single TCP stream and packed efficiently
	    into TCP segments.
          Note that this means that DNS name compression cannot be used
          between different RECONFIRM messages.
          However, when a client is sending multiple RECONFIRM messages this
	    indicates
          a situation with serious network problems, and this is not expected
	    to occur
          frequently enough that optimizing efficiency in this case is
	    important.
          
           TYPE  MUST NOT be the value ANY (255) and CLASS
	     MUST NOT be the value ANY (255).
           DNS wildcarding is not supported.
          That is, an asterisk character ("*") in a RECONFIRM message matches
          only a literal asterisk character ("*") in a name and nothing else.
          Similarly, a CNAME in a RECONFIRM message matches only a CNAME
	    record
          with that name in the zone and no other records with that name.
           Note that there is no RDLEN field,
          since the length of the RDATA can be inferred from DSO-LENGTH,
          so an additional RDLEN field would be redundant.
           Following the same rules as for PUSH messages, DNS name
	    compression SHOULD
          be used within the RDATA of the RECONFIRM message, with offsets
	    relative to the
          beginning of the DNS message  .
           
             RECONFIRM Message
             
                                   1  1  1  1  1  1
     0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   |           MESSAGE ID (MUST BE ZERO)           |   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |QR| OPCODE(6) |         Z          |   RCODE   |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             QDCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
   |             ANCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             NSCOUNT (MUST BE ZERO)            |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |             ARCOUNT (MUST BE ZERO)            |   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
   |         DSO-TYPE = RECONFIRM (0x0043)         |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   |   DSO-LENGTH (number of octets in DSO-DATA)   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
   \                     NAME                      \   \
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   |                     TYPE                      |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > DSO-DATA
   |                     CLASS                     |    |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
   \                     RDATA                     \   /
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
          
        
      
       
         DNS Stateful Operations TLV Context Summary
         This document defines four new DSO TLVs. As recommended in  the DNS Stateful
	Operations specification, the valid contexts of these
        new TLV types are summarized below.
         The client TLV contexts are:
          
          
        
         
           C-P:
           Client request message, Primary TLV
           C-U:
           Client Unidirectional message, primary TLV
           C-A:
           Client request or unidirectional message, Additional TLV
           CRP:
           Response back to client, Primary TLV
           CRA:
           Response back to client, Additional TLV
        
         
           DSO TLV Client Context Summary
           
             
               TLV Type
               C-P
               C-U
               C-A
               CRP
               CRA
            
          
           
             
               SUBSCRIBE
               X
               
               
               
               
            
             
               PUSH
               
               
               
               
               
            
             
               UNSUBSCRIBE
               
               X
               
               
               
            
             
               RECONFIRM
               
               X
               
               
               
            
          
        
         The server TLV contexts are:
        
        
        
         
           S-P:
           Server request message, Primary TLV
           S-U:
           Server Unidirectional message, primary TLV
           S-A:
           Server request or unidirectional message, Additional TLV
           SRP:
           Response back to server, Primary TLV
           SRA:
           Response back to server, Additional TLV
        
         
           DSO TLV Server Context Summary
           
             
               TLV Type
               S-P
               S-U
               S-A
               SRP
               SRA
            
          
           
             
               SUBSCRIBE
               
               
               
               
               
            
             
               PUSH
               
               X
               
               
               
            
             
               UNSUBSCRIBE
               
               
               
               
               
            
             
               RECONFIRM
               
               
               
               
               
            
          
        
      
       
         Client-Initiated Termination
         An individual subscription is terminated by sending an UNSUBSCRIBE
        TLV for that specific subscription, or all subscriptions can be
        canceled at once by the client closing the DSO session. When a client
        terminates an individual subscription (via UNSUBSCRIBE) or all
        subscriptions on that DSO session (by ending the session), it is
        signaling to the server that it is no longer interested in receiving
        those particular updates. It is informing the server that the server
        may release any state information it has been keeping with regards to
        these particular subscriptions.
         After terminating its last subscription on a session via
        UNSUBSCRIBE, a client  MAY close the session immediately
        or it may keep it open if it anticipates performing further operations
        on that session in the future. If a client wishes to keep an idle
        session open, it  MUST respect the maximum idle time
        required by the server  .
         If a client plans to terminate one or more subscriptions on a
        session and doesn't intend to keep that session open, then as an
        efficiency optimization, it  MAY instead choose to
	simply
        close the session, which implicitly terminates all subscriptions on
        that session. This may occur because the client computer is being shut
        down, is going to sleep, the application requiring the subscriptions
        has terminated, or simply because the last active subscription on that
        session has been canceled.
         When closing a session, a client should perform an orderly close of
        the TLS session.  Typical APIs will provide a session close method
        that will send a TLS close_notify alert as described in  the TLS 1.3 specification.
	This instructs the
        recipient that the sender will not send any more data over the
        session.  After sending the TLS close_notify alert, the client
         MUST gracefully close the underlying connection using a
        TCP FIN so that the TLS close_notify is reliably delivered.  The
        mechanisms for gracefully closing a TCP connection with a TCP FIN vary
        depending on the networking API.  For example, in the BSD Sockets API,
        sending a TCP FIN is achieved by calling "shutdown(s,SHUT_WR)" and
        keeping the socket open until all remaining data has been read from
        it.
         If the session is forcibly closed at the TCP level by sending a
       RST from either end of the connection, data may be lost.
      
       
         Client Fallback to Polling
         There are cases where a client may exhaust all avenues for
        establishing a DNS Push Notification subscription without success.
        This can happen if the client's configured recursive resolver does not
        support DNS over TLS, or supports DNS over TLS but is not listening on
        TCP port 853, or supports DNS over TLS on TCP port 853 but does not
        support DSO on that port, or for some other reason is unable to
        provide a DNS Push Notification subscription.  In this case, the
	client
        will attempt to communicate directly with an appropriate server, and
        it may be that the zone apex discovery fails, or there is no
         _dns‑push‑tls._tcp.<zone> SRV record, or
        the server indicated in the SRV record is misconfigured, overloaded,
	or is
        unresponsive for some other reason.
         Regardless of the reason for the failure, after being unable to
        establish the desired DNS Push Notification subscription, it is likely
        that the client will still wish to know the answer it seeks, even if
        that answer cannot be obtained with the timely change notifications
        provided by DNS Push Notifications.  In such cases, it is likely that
        the client will obtain the answer it seeks via a conventional DNS
        query instead, repeated at some interval to detect when the answer
        RRset changes.
         In the case where a client responds to its failure to establish a
        DNS Push Notification subscription by falling back to polling with
        conventional DNS queries instead, the polling rate should be
        controlled to avoid placing excessive burden on the server.  The
        interval between successive DNS queries for the same name, type, and
        class  SHOULD be at least the minimum of 900 seconds (15
        minutes) or two seconds more than the TTL of the answer RRset.
         The reason that for TTLs up to 898 seconds the query should
        not be reissued until two seconds  after the answer RRset has
        expired, is to ensure that the answer RRset has also expired from the
        cache on the client's configured recursive resolver.  Otherwise
        (particularly if the clocks on the client and the recursive resolver
        do not run at precisely the same rate), there's a risk of a race
        condition where the client queries its configured recursive resolver
        just as the answer RRset has one second remaining in the recursive
        resolver's cache.  The client would receive a reply telling it
        that the answer RRset has one second remaining; the client
        would then requery the recursive resolver again one second later.
        If by this time the answer RRset has actually expired from the
        recursive resolver's cache, the recursive resolver would then
        issue a new query to fetch fresh data from the
        authoritative server.  Waiting until the answer RRset has definitely
        expired from the cache on the client's configured recursive resolver
        avoids this race condition and any unnecessary additional queries it
        causes.
         Each time a client is about to reissue its query to discover
        changes to the answer RRset, it should first make a new attempt to
        establish a DNS Push Notification subscription using previously
        cached DNS answers as appropriate.  After a temporary misconfiguration
        has been remedied, this allows a client that is polling to return to
        using DNS Push Notifications for asynchronous notification of
        changes.
      
    
     
       Security Considerations
       The Strict Privacy profile for DNS over TLS is
       REQUIRED for DNS Push Notifications  . Cleartext connections for DNS Push
      Notifications are not permissible. Since this is a new protocol,
      transition mechanisms from the Opportunistic Privacy profile are
      unnecessary.
       Also, see
       the document Usage
      Profiles for DNS over (D)TLS
      for additional
      recommendations for various versions of TLS usage.
       As a consequence of requiring TLS, client certificate authentication
      and verification may also be enforced by the server for stronger
      client-server security or end-to-end security. However, recommendations
      for security in particular deployment scenarios are outside the scope of
      this document.
       DNSSEC is  RECOMMENDED for the authentication of DNS
      Push Notification servers.  TLS alone does not provide complete
      security.  TLS certificate verification can provide reasonable assurance
      that the client is really talking to the server associated with the
      desired host name, but since the desired host name is learned via a DNS
      SRV query, if the SRV query is subverted, then the client may have a
      secure connection to a rogue server.  DNSSEC can provide added
      confidence that the SRV query has not been subverted.
       
         Security Services
         It is the goal of using TLS to provide the following security
	services:
        
         
           Confidentiality:
           All application-layer communication is encrypted with the goal
	    that no party should be able to decrypt it except the intended
	      receiver.
           Data integrity protection:
           Any changes made to the communication in transit are detectable
	    by the receiver.
           Authentication:
           An endpoint of the TLS communication is authenticated as the
	    intended entity to communicate with.
           Anti-replay protection:
           TLS provides for the detection of and prevention
           against messages sent previously over a TLS connection (such as DNS
	      Push Notifications).
           If prior messages are re-sent at a later time as a form of a
	      man-in-the-middle attack,
           then the receiver will detect this and reject the replayed
	     messages.
        
         Deployment recommendations on the appropriate key lengths and
	cipher suites are beyond the scope of this document. Please refer to
	the current
	TLS Recommendations  
	for the best current practices.
	Keep in mind that best practices only exist for a snapshot in time,
	and recommendations will continue to change.
	Updated versions or errata may exist for these recommendations.
      
       
         TLS Name Authentication
         As described in  , the
        client discovers the DNS Push Notification server using an SRV lookup
        for the record name
         _dns‑push‑tls._tcp.<zone>. The server
        connection endpoint  SHOULD then be authenticated using
        DANE TLSA records for the associated SRV record. This associates the
        target's name and port number with a trusted TLS certificate  . This procedure uses the TLS
        Server Name Indication (SNI) extension   to inform the server of the name the client has
        authenticated through the use of TLSA records. Therefore, if the SRV
        record passes DNSSEC validation and a TLSA record matching the target
        name is usable, an SNI extension must be used for the target name to
        ensure the client is connecting to the server it has authenticated. If
        the target name does not have a usable TLSA record, then the use of
        the SNI extension is optional. See Usage Profiles for DNS over TLS and
        DNS over DTLS   for more
        information on authenticating domain names.
      
       
         TLS Early Data
         DSO messages with the SUBSCRIBE TLV as the Primary TLV are
	permitted in TLS early data.
       Using TLS early data can save one network round trip and can result in
       the client obtaining results faster.
         However, there are some factors to consider before using TLS early
	data.
         TLS early data is not forward secret.
       In cases where forward secrecy of DNS Push Notification subscriptions
       is required,
       the client should not use TLS early data.
         With TLS early data, there are no guarantees of non-replay between
	connections.
       If packets are duplicated and delayed in the network,
       the later arrivals could be mistaken for new subscription requests.
       Generally, this is not a major concern
       since the amount of state generated on the server for
       these spurious subscriptions is small and short lived
       since the TCP connection will not complete the three-way handshake.
       Servers  MAY choose to implement rate-limiting measures
       that are activated when
       the server detects an excessive number of spurious subscription
       requests.
         For further guidance on use of TLS early data, please see
	discussion of zero round-trip data
       in Sections  
       and
        , and Appendix
        , of  the TLS 1.3 specification.
      
       
         TLS Session Resumption
         TLS session resumption  
       is permissible on DNS Push Notification servers.
       However, closing the TLS connection terminates the DSO session.
       When the TLS session is resumed, the DNS Push Notification server will
       not
       have any subscription state and will proceed as with any other new DSO
       session.
       Use of TLS session resumption may allow a TLS connection to be set up
       more quickly,
       but the client will still have to recreate any desired
       subscriptions.
      
    
     
       IANA Considerations
       This document defines a new service name, only applicable for the TCP
      protocol,
     which has been recorded in the IANA "Service Name and Transport Protocol
      Port Number Registry"    .
       
         IANA Service Type Assignments
         
           
             Name
             Port
             Value
             Section
          
        
         
           
             DNS Push Notification Service Type
             None
             
               _dns‑push‑tls._tcp
             
               
          
        
      
       This document defines four new DNS Stateful Operation TLV types,
     which have been recorded in the IANA "DSO Type Codes" registry    .
       
         IANA DSO TLV Type Code Assignments
         
           
             Name
             Value
             Early Data
             Status
             Section
          
        
         
           
             SUBSCRIBE
             0x0040
             OK
             Standards Track
             
               
          
           
             PUSH
             0x0041
             NO
             Standards Track
             
               
          
           
             UNSUBSCRIBE
             0x0042
             NO
             Standards Track
             
               
          
           
             RECONFIRM
             0x0043
             NO
             Standards Track
             
               
          
        
      
       This document defines no new DNS OPCODEs or RCODEs.
    
  
   
     
     
       References
       
         Normative References
         
           
             Domain Name System (DNS) Parameters
             
               IANA
            
          
        
         
           
             ASCII format for network interchange
             
               
            
             
          
           
           
           
        
         
           
             User Datagram Protocol
             
               
            
             
          
           
           
           
        
         
           
             Transmission Control Protocol
             
               
            
             
          
           
           
           
        
         
           
             Domain names - concepts and facilities
             
               
            
             
             
               This RFC is the revised basic definition of The Domain Name System.  It obsoletes RFC-882.  This memo describes the domain style names and their used for host address look up and electronic mail forwarding.  It discusses the clients and servers in the domain name system and the protocol used between them.
            
          
           
           
           
        
         
           
             Domain names - implementation and specification
             
               
            
             
             
               This RFC is the revised specification of the protocol and format used in the implementation of the Domain Name System.  It obsoletes RFC-883. This memo documents the details of the domain name client - server communication.
            
          
           
           
           
        
         
           
             Requirements for Internet Hosts - Application and Support
             
               
            
             
             
               This RFC is an official specification for the Internet community.  It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts.  [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Key words for use in RFCs to Indicate Requirement Levels
             
               
            
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             Dynamic Updates in the Domain Name System (DNS UPDATE)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Using this specification of the UPDATE opcode, it is possible to add or delete RRs or RRsets from a specified zone.  Prerequisites are specified separately from update operations, and can specify a dependency upon either the previous existence or nonexistence of an RRset, or the existence of a single RR.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Clarifications to the DNS Specification
             
               
            
             
               
            
             
             
               This document considers some areas that have been identified as problems with the specification of the Domain Name System, and proposes remedies for the defects identified. [STANDARDS-TRACK]
            
          
           
           
        
         
           
             A DNS RR for specifying the location of services (DNS SRV)
             
               
            
             
               
            
             
               
            
             
             
               This document describes a DNS RR which specifies the location of the server(s) for a specific protocol and domain.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Transport Layer Security (TLS) Extensions: Extension Definitions
             
               
            
             
             
               This document provides specifications for existing TLS extensions.  It is a companion document for RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2".  The extensions specified are server_name, max_fragment_length, client_certificate_url, trusted_ca_keys, truncated_hmac, and status_request.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document defines the procedures that the Internet Assigned Numbers Authority (IANA) uses when handling assignment and other requests related to the Service Name and Transport Protocol Port Number registry.  It also discusses the rationale and principles behind these procedures and how they facilitate the long-term sustainability of the registry.
               This document updates IANA's procedures by obsoleting the previous UDP and TCP port assignment procedures defined in Sections 8 and 9.1 of the IANA Allocation Guidelines, and it updates the IANA service name and port assignment procedures for UDP-Lite, the Datagram Congestion Control Protocol (DCCP), and the Stream Control Transmission Protocol (SCTP).  It also updates the DNS SRV specification to clarify what a service name is and how it is registered.  This memo documents an Internet Best Current Practice.
            
          
           
           
           
        
         
           
             Domain Name System (DNS) IANA Considerations
             
               
            
             
             
               This document specifies Internet Assigned Numbers Authority (IANA) parameter assignment considerations for the allocation of Domain Name System (DNS) resource record types, CLASSes, operation codes, error codes, DNS protocol message header bits, and AFSDB resource record subtypes.  It obsoletes RFC 6195 and updates RFCs 1183, 2845, 2930, and 3597.
            
          
           
           
           
        
         
           
             Using DNS-Based Authentication of Named Entities (DANE) TLSA Records with SRV Records
             
               
            
             
               
            
             
               
            
             
             
               The DNS-Based Authentication of Named Entities (DANE) specification (RFC 6698) describes how to use TLSA resource records secured by DNSSEC (RFC 4033) to associate a server's connection endpoint with its Transport Layer Security (TLS) certificate (thus enabling administrators of domain names to specify the keys used in that domain's TLS servers).  However, application protocols that use SRV records (RFC 2782) to indirectly name the target server connection endpoints for a service domain name cannot apply the rules from RFC 6698.  Therefore, this document provides guidelines that enable such protocols to locate and use TLSA records.
            
          
           
           
        
         
           
             DNS Transport over TCP - Implementation Requirements
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document specifies the requirement for support of TCP as a transport protocol for DNS implementations and provides guidelines towards DNS-over-TCP performance on par with that of DNS-over-UDP. This document obsoletes RFC 5966 and therefore updates RFC 1035 and RFC 1123.
            
          
           
           
        
         
           
             Specification for DNS over Transport Layer Security (TLS)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes the use of Transport Layer Security (TLS) to provide privacy for DNS.  Encryption provided by TLS eliminates opportunities for eavesdropping and on-path tampering with DNS queries in the network, such as discussed in RFC 7626.  In addition, this document specifies two usage profiles for DNS over TLS and provides advice on performance considerations to minimize overhead from using TCP and TLS with DNS.
               This document focuses on securing stub-to-recursive traffic, as per the charter of the DPRIVE Working Group.  It does not prevent future applications of the protocol to recursive-to-authoritative traffic.
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             Usage Profiles for DNS over TLS and DNS over DTLS
             
               
            
             
               
            
             
               
            
             
             
               This document discusses usage profiles, based on one or more authentication mechanisms, which can be used for DNS over Transport Layer Security (TLS) or Datagram TLS (DTLS).  These profiles can increase the privacy of DNS transactions compared to using only cleartext DNS.  This document also specifies new authentication mechanisms -- it describes several ways that a DNS client can use an authentication domain name to authenticate a (D)TLS connection to a DNS server.  Additionally, it defines (D)TLS protocol profiles for DNS clients and servers implementing DNS over (D)TLS.  This document updates RFC 7858.
            
          
           
           
        
         
           
             The Transport Layer Security (TLS) Protocol Version 1.3
             
               
            
             
             
               This document specifies version 1.3 of the Transport Layer Security (TLS) protocol.  TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
               This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961.  This document also specifies new requirements for TLS 1.2 implementations.
            
          
           
           
        
         
           
             DNS Stateful Operations
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document defines a new DNS OPCODE for DNS Stateful Operations (DSO).  DSO messages communicate operations within persistent stateful sessions using Type Length Value (TLV) syntax.  Three TLVs are defined that manage session timeouts, termination, and encryption padding, and a framework is defined for extensions to enable new stateful operations.  This document updates RFC 1035 by adding a new DNS header OPCODE that has both different message semantics and a new result code.  This document updates RFC 7766 by redefining a session, providing new guidance on connection reuse, and providing a new mechanism for handling session idle timeouts.
            
          
           
           
        
         
           
             Service Name and Transport Protocol Port Number Registry
             
               IANA
            
          
        
      
       
         Informative References
         
           
             Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
             
               
            
             
               
            
             
               
            
             
          
           
           
        
         
           
             Observer pattern
             
               Wikipedia
            
             
          
        
         
           
             Negative Caching of DNS Queries (DNS NCACHE)
             
               
            
             
             
               RFC1034 provided a description of how to cache negative responses.  It however had a fundamental flaw in that it did not allow a name server to hand out those cached responses to other resolvers, thereby greatly reducing the effect of the caching.  This document addresses issues raise in the light of experience and replaces RFC1034 Section 4.3.4. [STANDARDS-TRACK]
            
          
           
           
        
         
           
             A DNS RR Type for Lists of Address Prefixes (APL RR)
             
               
            
             
             
               The Domain Name System (DNS) is primarily used to translate domain names into IPv4 addresses using A RRs (Resource Records).  Several approaches exist to describe networks or address ranges.  This document specifies a new DNS RR type "APL" for address prefix lists.  This memo defines an Experimental Protocol for the Internet community.
            
          
           
           
        
         
           
             The Atom Syndication Format
             
               
            
             
               
            
             
             
               This document specifies Atom, an XML-based Web content and metadata syndication format.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Defending TCP Against Spoofing Attacks
             
               
            
             
             
               Recent analysis of potential attacks on core Internet infrastructure indicates an increased vulnerability of TCP connections to spurious resets (RSTs), sent with forged IP source addresses (spoofing).  TCP has always been susceptible to such RST spoofing attacks, which were indirectly protected by checking that the RST sequence number was inside the current receive window, as well as via the obfuscation of TCP endpoint and port numbers.  For pairs of well-known endpoints often over predictable port pairs, such as BGP or between web servers and well-known large-scale caches, increases in the path bandwidth-delay product of a connection have sufficiently increased the receive window space that off-path third parties can brute-force generate a viable RST sequence number.  The susceptibility to attack increases with the square of the bandwidth, and thus presents a significant vulnerability for recent high-speed networks.  This document addresses this vulnerability, discussing proposed solutions at the transport level and their inherent challenges, as well as existing network level solutions and the feasibility of their deployment.  This document focuses on vulnerabilities due to spoofed TCP segments, and includes a discussion of related ICMP spoofing attacks on TCP connections.  This memo provides information for the Internet community.
            
          
           
           
        
         
           
             Understanding Apple's Back to My Mac (BTMM) Service
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes the implementation of Apple Inc.'s Back to My Mac (BTMM) service.  BTMM provides network connectivity between devices so that a user can perform file sharing and screen sharing among multiple computers at home, at work, or on the road.  The implementation of BTMM addresses the issues of single sign-on authentication, secure data communication, service discovery, and end-to-end connectivity in the face of Network Address Translators (NATs) and mobility of devices.  This document is not an Internet  Standards Track specification; it is published for informational  purposes.
            
          
           
           
        
         
           
             Multicast DNS
             
               
            
             
               
            
             
             
               As networked devices become smaller, more portable, and more ubiquitous, the ability to operate with less configured infrastructure is increasingly important.  In particular, the ability to look up DNS resource record data types (including, but not limited to, host names) in the absence of a conventional managed DNS server is useful.
               Multicast DNS (mDNS) provides the ability to perform DNS-like operations on the local link in the absence of any conventional Unicast DNS server.  In addition, Multicast DNS designates a portion of the DNS namespace to be free for local use, without the need to pay any annual fee, and without the need to set up delegations or otherwise configure a conventional DNS server to answer for those names.
               The primary benefits of Multicast DNS names are that (i) they require little or no administration or configuration to set them up, (ii) they work when no infrastructure is present, and (iii) they work during infrastructure failures.
            
          
           
           
        
         
           
             DNS-Based Service Discovery
             
               
            
             
               
            
             
             
               This document specifies how DNS resource records are named and structured to facilitate service discovery.  Given a type of service that a client is looking for, and a domain in which the client is looking for that service, this mechanism allows clients to discover a list of named instances of that desired service, using standard DNS queries. This mechanism is referred to as DNS-based Service Discovery, or DNS-SD.
            
          
           
           
        
         
           
             NAT Port Mapping Protocol (NAT-PMP)
             
               
            
             
               
            
             
             
               This document describes a protocol for automating the process of creating Network Address Translation (NAT) port mappings.  Included in the protocol is a method for retrieving the external IPv4 address of a NAT gateway, thus allowing a client to make its external IPv4 address and port known to peers that may wish to communicate with it. From 2005 onwards, this protocol was implemented in Apple products including Mac OS X, Bonjour for Windows, and AirPort wireless base stations.  In 2013, NAT Port Mapping Protocol (NAT-PMP) was superseded by the IETF Standards Track RFC "Port Control Protocol (PCP)", which builds on NAT-PMP and uses a compatible packet format, but adds a number of significant enhancements.
            
          
           
           
        
         
           
             Port Control Protocol (PCP)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Port Control Protocol allows an IPv6 or IPv4 host to control how incoming IPv6 or IPv4 packets are translated and forwarded by a Network Address Translator (NAT) or simple firewall, and also allows a host to optimize its outgoing NAT keepalive messages.
            
          
           
           
        
         
           
             TCP Fast Open
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document describes an experimental TCP mechanism called TCP Fast Open (TFO).  TFO allows data to be carried in the SYN and SYN-ACK packets and consumed by the receiving end during the initial connection handshake, and saves up to one full round-trip time (RTT) compared to the standard TCP, which requires a three-way handshake (3WHS) to complete before data can be exchanged.  However, TFO deviates from the standard TCP semantics, since the data in the SYN could be replayed to an application in some rare circumstances.  Applications should not use TFO unless they can tolerate this issue, as detailed in the Applicability section.
            
          
           
           
        
         
           
             Internet Printing Protocol/1.1: Encoding and Transport
             
               
            
             
               
            
             
             
               The Internet Printing Protocol (IPP) is an application-level protocol for distributed printing using Internet tools and technologies.  This document defines the rules for encoding IPP operations, attributes, and values into the Internet MIME media type called "application/ipp".  It also defines the rules for transporting a message body whose Content-Type is "application/ipp" over HTTP and/or HTTPS.  The IPP data model and operation semantics are described in "Internet                                      Printing Protocol/1.1: Model and Semantics" (RFC 8011).
            
          
           
           
           
        
         
           
             Internet Printing Protocol/1.1: Model and Semantics
             
               
            
             
               
            
             
             
               The Internet Printing Protocol (IPP) is an application-level protocol for distributed printing using Internet tools and technologies.  This document describes a simplified model consisting of abstract objects, attributes, and operations that is independent of encoding and transport.  The model consists of several objects, including Printers and Jobs.  Jobs optionally support multiple Documents.
               IPP semantics allow End Users and Operators to query Printer capabilities; submit Print Jobs; inquire about the status of Print Jobs and Printers; and cancel, hold, and release Print Jobs.  IPP semantics also allow Operators to pause and resume Jobs and Printers.
               Security, internationalization, and directory issues are also addressed by the model and semantics.  The IPP message encoding and transport are described in "Internet Printing Protocol/1.1: Encoding                                   and Transport" (RFC 8010).
               This document obsoletes RFCs 2911, 3381, and 3382.
            
          
           
           
           
        
         
           
             DNS Terminology
             
               
            
             
               
            
             
               
            
             
             
               The Domain Name System (DNS) is defined in literally dozens of different RFCs.  The terminology used by implementers and developers of DNS protocols, and by operators of DNS systems, has sometimes changed in the decades since the DNS was first defined.  This document gives current definitions for many of the terms used in the DNS in a single document.
               This document obsoletes RFC 7719 and updates RFC 2308.
            
          
           
           
           
        
         
           
             TCP Extensions for Multipath Operation with Multiple Addresses
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               TCP/IP communication is currently restricted to a single path per connection, yet multiple paths often exist between peers. The simultaneous use of these multiple paths for a TCP/IP session would improve resource usage within the network and thus improve user experience through higher throughput and improved resilience to network failure.
               Multipath TCP provides the ability to simultaneously use multiple paths between peers. This document presents a set of extensions to traditional TCP to support multipath operation. The protocol offers the same type of service to applications as TCP (i.e., a reliable bytestream), and it provides the components necessary to establish and use multiple TCP flows across potentially disjoint paths.
               This document specifies v1 of Multipath TCP, obsoleting v0 as specified in RFC 6824, through clarifications and modifications primarily driven by deployment experience.
            
          
           
           
        
         
           
             Apple's DNS Long-Lived Queries Protocol
             
               
            
             
               
            
             
          
           
           
        
         
           
             Discovery Proxy for Multicast DNS-Based Service Discovery
             
               
            
             
          
           
           
        
         
           
             dns_sd.h
             
               Apple Inc.
            
          
        
         
           
             Defenses Against TCP SYN Flooding Attacks
             
               Verizon Federal Network Systems
               
                 weddy@grc.nasa.gov
              
            
             
             TCP
          
           The Internet Protocol Journal
           Cisco Systems
           Volume 9
           Number 4
        
         
           
             RACK: a time-based fast loss detection algorithm for TCP
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document presents a new TCP loss detection algorithm called RACK ("Recent ACKnowledgment").  RACK uses the notion of time, instead of packet or sequence counts, to detect losses, for modern TCP implementations that can support per-packet timestamps and the selective acknowledgment (SACK) option.  It is intended to be an alternative to the DUPACK threshold approach [RFC6675], as well as other nonstandard approaches such as FACK [FACK].
            
          
           
           
           Work in Progress
        
         
           
             Publish-Subscribe
             
               
               
                 
              
            
             
               
               
                 peter@andyet.net
              
            
             
               
               
                 ralphm@ik.nu
              
            
             
          
           XSF XEP 0060

        
      
    
     
       Acknowledgments
       The authors would like to thank   and
        for previous work completed in this
      field.
       This document has been improved due to comments from
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
      ,
     and
      .
       provided clarifying text that was greatly
      appreciated.
    
     
       Authors' Addresses
       
         Unaffiliated
         
           
             
             Raleigh
             NC
             27608
             United States of America
          
           +1 919 867 1330
           pusateri@bangj.com
        
      
       
         Apple Inc.
         
           
             One Apple Park Way
             Cupertino
             CA
             95014
             United States of America
          
           +1 (408) 996-1010
           cheshire@apple.com
        
      
    
  


